Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Neutrinomassen und Flavor-Oszillationen

Ähnliche Präsentationen


Präsentation zum Thema: "Neutrinomassen und Flavor-Oszillationen"—  Präsentation transkript:

1 Neutrinomassen und Flavor-Oszillationen
Crab Nebula Neutrinomassen und Flavor-Oszillationen Was steckt hinter dem Physik-Nobelpreis 2015? Georg G. Raffelt Max-Planck-Institut für Physik, München

2 Physik-Nobelpreis 2015 für Neutrino-Oszillationen
Takaaki Kajita (*1959) University of Tokyo Arthur McDonald (*1943) Queen’s University, Kanada „für die Entdeckung von Neutrino-Oszillationen, was beweist, dass Neutrinos Masse haben”

3 Physik-Nobelpreise für Neutrinos
L. Lederman, M. Schwartz, J. Steinberger “für die Neutrinostrahl-Methode und … die Entdeckung des Muon-Neutrinos” 1988 F. Reines (1/2) “für die Entdeckung des Neutrinos” 1995 R. Davis, M. Koshiba (je 1/4) “für Pionierbeiträge zur Astrophysik, insbesondere für den Nachweis kosmischer Neutrinos” 2002 T. Kajita, A. McDonald “für die Entdeckung von Neutrino-Oszillationen, was beweist, dass Neutrinos Masse haben” 2015

4 Paulis Erklärung des Beta-Spektrums (1930)
„Neutron” (1930) „Neutrino” (E. Amaldi) Entdeckung des Neutrons 1932 (J. Chadwick) „Neutron” (1930) Wolfgang Pauli (1900–1958) Nobelpreis 1945 Spektrum Beta (Elektron) Energie Niels Bohr: Energie in der Quanten-Welt nicht erhalten?

5 n Neutrino Carabiner Jetzt auch in Farbe Griechisch „Nü”
Benannt nach einem sub-atomaren Teilchen mit fast verschwindender Masse … Jetzt auch in Farbe n Griechisch „Nü”

6 Periodensystem der Elementarteilchen
Quarks Leptonen Ladung /3 Down Ladung Elektron Ladung e-Neutrino ne e d Ladung /3 Up u Down Strange Bottom Electron Muon Tau e-Neutrino m-Neutrino t-Neutrino nt nm ne e m t d s b 1. Familie 2. Familie 3. Familie Up Charm Top u c Neutron Proton Starke WW (8 Gluonen) Elektromagnetische Wechselwirkung (Photon) Schwache Wechselwirkung (W and Z Bosonen) Gravitation (Gravitonen?) Higgs

7 Wo treten Neutrinos in der Natur auf?
Kernreaktoren Sonne Teilchen- beschleuniger Supernova (Sternkollaps) SN 1987A Atmosphäre (Kosmische Strahlung) Astrophysikalische Beschleuniger  Erdkruste (Natürliche Radioaktivität) Urknall (Heute 330 n/cm3) Indirekte Evidenz

8 Neutrinos aus der Sonne
Reaktions- ketten Energie 26.7 MeV Helium Sonnenabstrahlung: 98 % Licht 2 % Neutrinos Bei uns: 66 Milliarden Neutrinos/cm2 sec Hans Bethe ( , Nobelpreis 1967) Thermo-nukleare Reaktionsketten (1938)

9 Sonnenbrille für Neutrinos?
8.3 Lichtminuten Eine Bleischicht der Dicke von mehreren Lichtjahren nötig Bethe & Peierls 1934: „ … dies bedeutet, dass man offensichtlich niemals ein Neutrino beobachten wird”

10 Erster Nachweis an Kernreaktoren (1954–56)
Clyde Cowan (1919–1974) Fred Reines (1918–1998) Nobelpreis 1995 Detektor Prototyp Anti-Elektron Neutrinos vom Hanford Kernreaktor 3 Gammas in Koinzidenz n Cd g 𝝂 𝐞 p g g e + e −

11 Erste Messung von Neutrinos aus der Sonne
Inverser Beta-Zerfall („Neutrinoeinfang”) 600 Tonnen Tetrachlorkohlenstoff Homestake Sonnenneutrino- Observatorium (1967–1994)

12 Physik-Nobelpreis 2002 für Neutrino-Astronomie
Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926) „für Pionierbeiträge zur Astrophysik, insbeson- dere für den Nachweis kosmischer Neutrinos”

13 Resultat des Chlor Experiments (Homestake)
Theoretische Erwartung Theoretische Erwartung 6-9 SNU „Sonnen-Neutrino-Problem” seit ca. 1968 ApJ 496:505, 1998 Mittlere Rate Mittelwert ( )  0.16stat  0.16sys SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 1036 Atome)

14 „Fehlende Sonnenneutrinos” in vielen Experimenten
Homestake 7Be 8B CNO Chlor Gallex/GNO SAGE CNO 7Be pp 8B Gallium (Super-) Kamiokande 8B Wasser ne+ e  ne+ e SNO 8B ne+ d  p + p + e Schweres Wasser

15 „Neutrino-Verwandlung” des Rätsels Lösung?
Detektor Sonne Sonne Detektor

16 Neutrino-Flavor-Oszillationen
Pontecorvo & Gribov (1968) zum „Sonnenneutrinoproblem“ • Neutrinos Überlagerungen von „Masseneigenzuständen” 𝜈 𝑒 = +cos Θ 𝜈 1 + sin Θ 𝜈 2 𝜈 𝜇 = −sin Θ 𝜈 1 + cos Θ 𝜈 2 • Verschiedene Ausbreitungsgeschwindigkeiten • Phasenunterschied 𝛿 𝑚 2 2𝐸 𝐿 bewirkt Oszillationen • Ähnlich zu „optischer Aktivität” bei Lichtausbreitung Bruno Pontecorvo (1913–1993) Wahrscheinlichkeit 𝜈 𝑒 → 𝜈 𝜇 sin2(2𝜃) L 4𝜋𝐸 𝛿 𝑚 2 =2.5 m 𝐸 MeV e V 2 𝛿 𝑚 2 Oszillations- Länge Vladimir Gribov (1930–1997)

17 Mischung von Neutrinos verschiedener Masse
Masse m1 Masse m2 n Elektron- neutrino Masse m2 = m1 Masse m1 Neutrino-Ausbreitung als Wellen-Phänomen Masse m2 > m1 Masse m1

18 Neutrino-Oszillationen
Masse m2 > m1 Masse m1 Oszillations-Länge 4𝜋𝐸 𝑚 2 2 − 𝑚 1 2

19 Neutrino-Oszillationen
Oszillations-Länge 4𝜋𝐸 𝑚 2 2 − 𝑚 1 2

20 SNO Proposal • Vorschlag 1984: Schweres Wasser als „Neutrinofänger”
• „Sieht” alle Neutrinoflavors • Verfügbar in Kanada als Leihgabe der kanadischen strategischen Reserve des CANDU Reaktorprogramms • Bildung des Sudbury Neutrino Observatory Projekts (SNO) • Nach dem Tod von H. Chen (7. Nov. 1987) übernimmt Art McDonald (damals Princeton) die Leitung des Projekts • Messung des vollen Sonnenneutrinoflusses 2002 • Nobelpreis für Art McDonald 2015 Herbert Hwa Chen (1942–1987)

21 Sudbury Neutrino Observatory (SNO) 1999–2006
1000 Tonnen „Schweres Wasser” Normales (leichtes) Wasser H20 Schweres Wasser D20 Wasserstoffkern (Proton) Schwerer Wasserstoff (Deuterium)

22 Sudbury Neutrino Observatory (SNO) 1999–2006
Schwerer Wasserstoff (Deuterium) Schwerer Wasserstoff (Deuterium) Elektron-Neutrinos Alle Neutrino-Flavors

23 Resultat des SNO Detektors (2002)
„Fehlende” Elektron-Neutrinos kommen wirklich in den anderen Flavors an! Arthur McDonald Queen’s University, Kanada Phys. Rev. Lett. 89:011301, 2002 (http://arXiv.org/abs/nucl-ex/ )

24 Reaktor-Neutrino-Oszillationen (KamLAND, Japan)
Oszillationsmuster für Anti-Elektron-Neutrinos als Funktion der Energie bei festem Abstand (ca. 180 km) Messpunkte 𝜈 𝑒 Überlebenswahrscheinlichkeit Erwartete Überlebenswahrscheinlichkeit basierend auf Reaktorabständen Abstand/Energie (km/MeV) KamLAND Szintillator-Detektor (1000 t)

25 Neutrinostreuung oder Einfang
Tscherenkow Effekt Tscherenkow Ring Neutrinostreuung oder Einfang Licht Elektron oder Muon (Geladenes Teilchen) Neutrino Wasser

26 Super-Kamiokande Neutrino Detektor (Seit 1996)

27 Super-Kamiokande: Sonne im Neutrinolicht
Jahreszeit Winkel relativ zur Sonne Super-Kamiokande: Sonne im Neutrinolicht Bisher ca Sonnenneutrinos gemessen (1996–2014)

28 Atmosphärische Neutrinos
• Chase-Witwatersrand-Irvine Collaboration East Rand Proprietary Mine/South Africa • Kolar Gold Field (KGF, India) Collaboration (Japan-India-UK group) • Erstes „natürliches Neutrino”: 23. Feb. 1965 • 23. Februar 1987: Neutrinos der SN 1987A

29 Präsentation bei „Neutrino 1998“ in Takayama
Neutrino 1998, Takayama, Japan,

30 Präsentation bei „Neutrino 1998“ in Takayama
Neutrino 1998, Takayama, Japan,

31 Präsentation bei „Neutrino 1998“ in Takayama
Von unten („up-going”) nur der halbe Fluss der Muon-Neutrinos verglichen mit „down-going” Flavor-Oszillationen, und zwar der Muon-Neutrinos! Neutrino 1998, Takayama, Japan,

32 Präsentation bei „Neutrino 1998“ in Takayama
Takaaki Kajita University of Tokyo Von unten (“up-going”) nur der halbe Fluss der Muon-Neutrinos verglichen mit “down-going” Flavor-Oszillationen, und zwar der Muon-Neutrinos! Neutrino 1998, Takayama, Japan,

33 „Long-Baseline” (LBL) Experimente
K2K Experiment (KEK to Kamiokande) und andere LBL Experimente messen genaue Oszillations- parameter

34 Drei-Flavor-Mischung (normal)
Kleine „1-3-Mischung” ab dem Jahr 2012 an Reaktor-Experimenten gemessen (Daya Bay, Reno, Double-Chooz) 2% 57% 41% 30% Atmosphärische Neutrinos 𝑚 3 2 − 𝑚 2 2 ≈2400 meV 2 68% 47% 23% Sonnen-Neutrinos 𝑚 2 2 − 𝑚 1 2 ≈75 meV 2 20% 12% Neueste Details z.B. unter

35 Drei-Flavor-Mischung (invertiert)
Kleine „1-3-Mischung” ab dem Jahr 2012 an Reaktor-Experimenten gemessen (Daya Bay, Reno, Double-Chooz) 30% 23% 47% Sonnen-Neutrinos 𝑚 2 2 − 𝑚 1 2 ≈75 meV 2 20% 68% 57% 12% 41% Atmosphärische Neutrinos 𝑚 3 2 − 𝑚 2 2 ≈2400 meV 2 2% Neueste Details z.B. unter

36 Oszillieren Antineutrinos anders als Neutrinos?
𝝂 𝐞 = 𝑐 12 𝑐 𝝂 𝟏 + 𝑠 12 𝑐 𝝂 𝟐 + 𝑠 13 𝑒 −𝑖 𝛿 𝝂 𝟑 𝝂 𝐞 = 𝑐 12 𝑐 𝝂 𝟏 + 𝑠 12 𝑐 𝝂 𝟐 + 𝑠 13 𝑒 +𝑖 𝛿 𝝂 𝟑 Dirac-Phase verändert 3-Flavor Oszillationen zwischen Neutrinos und Antineutrinos 𝜈 𝑒 → 𝜈 𝑒 genauso wie 𝜈 𝑒 → 𝜈 𝑒 𝜈 𝑒 → 𝜈 𝜇 𝜈 𝑒 → 𝜈 𝜇 Abstand [1000 km] für E = 1 GeV

37 Energieskalen und Teilchenmassen
10 27 eV Planck Masse GUT Skala Elektroschwache QCD Kosmologische Konstante 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 1 10 −3 10 −6 Mindestmasse 𝑚 3 >50 meV (Oszillationen) Obere Schranke Σ 𝑚 𝜈 <230 meV (kosmologischen Messungen und Strukturbildung) „See-Saw-Mechanismus” (Klipp-Klapp-Mechanismus) Schwere „rechtshändige” Neutrinos?

38 Die „Neutrino-Waage” KATRIN
Tritium b-Zerfall Misst gemeinsame Masse m für alle Flavors (Massenunterschiede klein, siehe Oszillationen) Beste Schranken aus Mainz & Troitsk m < 2.2 eV (95% CL) KATRIN soll 0.2 eV erreichen Wird derzeit aufgebaut Datennahme soll 2016 beginnen Elektronspektrum Endpunkt- Energie 18.6 keV

39 KATRIN Ante Portas (25. November 2006)

40 Neutrinoloser Doppel-Beta-Zerfall
Einige Kerne zerfallen nur im bb Modus, z.B. Ge-76 76As 2- 76Ge 0+ 76Se 2+ 0+ Standard 2n Mode 0n Mode, ermöglicht durch Majorana Masse Halbwertszeit ~ 1021 yr • Neutrino-Masse nötig • Neutrino = Anti-Neutrino Wird in vielen Experimenten fieberhaft gesucht!

41 Weighing Neutrinos with the Universe

42 Urknall des Universums

43 Strukturbildung mit Neutrinos
Standard LCDM Modell Neutrinos mit Smn = 6.9 eV Strukturbildung mit Gadget Code simuliert Würfelseite 256 Mpc heutiges Universum Troels Haugbølle,

44 Pie Chart of Dark Matter of the Universe
Dunkle Energie ca 70% (Kosmologische Konstante) Neutrinos % Normale Materie ca 5% (hiervon ca 10% leuchtend) Dunkle Materie ca 25%

45 Crab Nebula – Remnant of SN 1054
Krebsnebel Überrest der historischen Supernova 1054 AD Crab Nebula – Remnant of SN 1054

46 Sternkollaps und Supernova Explosion
Zwiebelschalenstruktur Entarteter Eisenkern: r  109 g cm-3 T  K MFe  1.5 MSonne RFe  3000 km Wasserstoff Brennen Hauptreihenstern Kollaps (Implosion) Helium brennender Stern Helium Brennen Wasserstoff

47 Sternkollaps und Supernova Explosion
Neugeborener Neutronenstern ~ 50 km Proto-Neutronen Stern r ~ rnuc = 3  g cm-3 (300 Millionen Tonnen pro Kubikzentimeter) T ~ 30 MeV (300 Milliarden Grad Kelvin) Kollaps (Implosion) Explosion

48 Sternkollaps und Supernova Explosion
Neugeborener Neutronenstern ~ 50 km Neutrino- kühlung durch Diffusion Freigesetzte Gravitationsenergie Eb  3  1053 erg  17% MSonne c2 Abgegeben in Form von 99% Neutrinos 1% Kinetische Explosionsenergie 0.01% Licht, überstrahlt Heimatgalaxie Neutrinoleuchtkraft Ln ~ 3  1053 erg / 3 sec ~ 3  1019 LSonne Überstrahlt das gesamte sichtbare Universum für einige Sekunden Proto-Neutronen Stern r ~ rnuc = 3  g cm-3 T ~ 30 MeV

49 Sanduleak -69 202 Supernova 1987A Sanduleak -69 202 23. Februar 1987
Tarantel Nebel Große Magellan’sche Wolke Abstand 50 kpc ( Lichtjahre)

50 Neutrino-Signal der Supernova 1987A
Kamiokande-II (Japan) Wasser-Tscherenkow-Detektor 2140 Tonnen Energie (MeV) 2002 M. Koshiba Irvine-Michigan-Brookhaven (USA) Wasser-Tscherenkow-Detektor 6800 Tonnen Energie (MeV) Baksan-Szintillator-Teleskop (Russland) 200 Tonnen Energie (MeV) Zeit in Sekunden

51 Große Detektoren für Supernova-Neutrinos
SNO+ (300) HALO (tens) LVD (400) Borexino (100) Baksan (100) Super-K (104) KamLAND (400) Daya Bay (100) In Klammern Zahl der Ereignisse für eine „typische SN” im Abstand von 10 kpc IceCube (106)

52 Drei Arten energiereicher „kosmischer Botschafter”
Gamma Strahlung Kosmische Strahlung (geladene Teilchen) Neutrinos

53 IceCube Neutrino-Teleskop am Südpol
5160 Digitale Optische Module in 1 km3 antarktischem Eis (komplett seit Dez. 2010) Oberfläche 1400 m Tiefe 2400 m Tiefe

54 Amundson-Scott Station am Südpol
Stationsgebäude Astronomie-Sektor IceCube AMANDA Landebahn

55 IceCube Neutrino „Ernie”

56 „Entdeckung des Jahres“ (2013)

57 Astrophysikalische IceCube Neutrinos
Keine klaren astrophysikalischen Quellen – mehr Neutrinos nötig!

58 Big is Beautiful … 10 Kubik-Kilometer Doppelte Anzahl Optischer Module
IceCube Gen 2 Projekt (2020+)

59 Globales Neutrino Netzwerk (GNN)
GVD Antares KM3NeT IceCube

60 Wolfgang Pauli zu Neutrinos
„Ich habe etwas Schreckliches getan, ich habe ein Teilchen postuliert, das man nicht nachweisen kann.” Wolfgang Pauli (1900–1958)

61 Neutrinos at the center
Astrophysik & Kosmologie Elementarteilchen-Physik n Kosmische Strahlung


Herunterladen ppt "Neutrinomassen und Flavor-Oszillationen"

Ähnliche Präsentationen


Google-Anzeigen