Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Seminar Informationsverwaltung in Sensornetzen Anfragespezifische Routingmechanismen Maria Kopaigorenko Betreuer: Markus Bestehorn.

Ähnliche Präsentationen


Präsentation zum Thema: "Seminar Informationsverwaltung in Sensornetzen Anfragespezifische Routingmechanismen Maria Kopaigorenko Betreuer: Markus Bestehorn."—  Präsentation transkript:

1 Seminar Informationsverwaltung in Sensornetzen Anfragespezifische Routingmechanismen Maria Kopaigorenko Betreuer: Markus Bestehorn

2 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 2 Übersicht Einführung Eigenschaften von Sensornetzen Anforderungen an Routingverfahren Flooding/Spannbäume Directed Diffusion Broadcasting-Based Query Scheme Zusammenfassung

3 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 3 Typische Eigenschaften von Sensornetzen Anwendungsspezifisch Sensorknoten: homogen, zufällig und dicht verteilt Stationäre Datensenke Alle Sensorknoten verwenden Broadcastnachrichten Energieverbrauch auf der Netzwerk-Schnittstelle: Senden Empfangen Idle-Listening Jeder Knoten fungiert für andere Knoten als Router Messungen aus einer bestimmten Sub-Region des Sensornetzes von Interesse

4 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 4 Anforderungen an Routingverfahren Verbreitung/Weiterleitung der Anfragen/Daten über mehrere Hops Energieeffizienz - entscheidender Entwurfsaspekt Gewährleistung möglichst langer Lebenszeit vom Sensornetz Reduzieren vom Kommunikationsoverhead Unterstützung der Datenaggregation in Sensorknoten Robustheit gegen Knotenausfälle und Einstreuung neuer Sensorknoten Skalierbarkeit

5 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 5 Flooding/Spannbaum - Beispiel und Probleme Senke baut mit einem routing request einen Baum auf routing request enthält Level (Distanz zum Wurzelknoten) Knoten-ID und u.U. Attribut A, über welches der Baum gebildet werden soll Senke ist die Wurzel Jeder Knoten kennt seine Eltern- und Kinderknoten Senke stellt Anfrage per Boadcast Anfrage wird ensprechend dem Wert von Attribut A geroutet Jede geeignete Quelle sendet Daten an den Vaterknoten Alle Daten von Kinderknoten werden an den Vaterknoten weitergeleitet Probleme Sensorknoten nahe zur Senke verbrauchen Energie schneller als andere Knoten Keine dynamische Anpassung an Topologieänderungen R R R R R L=0 L=1 L=2

6 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 6 Directed Diffusion Motivation : Datenzentrische Adressierung Potentielle Datenquellen werden über Inhalte definiert Keine globalen ID's Semantik der Anwendung wird ausgenutzt Unterstützung event-basierter- Anfragen Informationen aus einer bestimmten Sub-Region des Sensornetzes von Interesse Detektiere ein vierbeiniges Tier in der Region X und schicke jede Sekunde ein Ergebnis in Richtung der Senke

7 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 7 Directed Diffusion Idee : Fluten von Anfrage für Daten eines bestimmten Types durch das Sensornetz (oder positionsbasierte bzw. cache-basierte Anfrageverbreitung) Dabei lernen Zwischen-Knoten, wohin die Daten dieses Types geleitet werden müssen Gezieltes Verstärken/Abschwächen einzelner Pfade, falls Daten auf mehreren Pfaden zur Senke fliessen

8 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 8 Directed Diffusion - Anfrageverbreitung Senke initiiert Anfage(Interest) nach Daten Interest: Liste von Attribut-Wert-Paaren type = four-legged animal interval = 1 s //bitte jede Sekunde ein event senden rect = [-100, 200, 200, 400] duration = 10 min Interest wird periodisch wiederholt Interest-Cache in jedem Sensorknoten Disjunkte Einträge Gradient: Referenz auf den Nachbarknoten, von dem die Nachricht kam + Wert (z.B. Datenrate, mit welcher ein Knoten die Ergebnisse liefern muss) Keine Informationen über die Senke Interest wird an alle (bzw. Teilmenge von) Nachbarn weitergeleitet C A B D F E G (-100,200) (200, 400)

9 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 9 Directed Diffusion – Datenweiterleitung Sensorknoten erfasst Ereignisse, für die ein Interest vorliegt Gradienten mit kleinstem Intervall bestimmen Bei lokalem Broadcast: Daten mit dieser Datenrate senden Bei unicast: mit Rate aus dem jeweiligen Gradienten senden Zwischenknoten: liegt nich vor Interest Ereignis löschen liegt vor, Ereignis im Daten-Cache sonst: Ereignis im Daten-Cache speichern, Nachricht weiterleiten evtl. Datenrate runterrechnen Die Senke verstärkt den besten Pfad Reinforcement-Nachrichten Explizites Senden vom gleichen Interest mit verkürztem Intervall Pfade können auch geschwächt werden defekte Pfade können lokal umorganisiert werden C A B D F E G DATA: type = four-legged animal instance = zebra location = [110, 350] intensity = 0.7 confidence = 0.8 timestamp = 01:21:40 INTEREST: type = four-legged animal inreval = 20ms rect = [-100, 200, 200, 400] duration = 10 min

10 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 10 Directed Diffusion – weitere Eigenschaften Lokaler Algorithmus: Kommunikation nur unter Nachbarn Muss für jeden Datentyp durchgeführt werden Funktioniert auch bei mehreren Senken Ungeignet beim Einsatz mobiler Knoten

11 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 11 Directed Diffusion - Bewertung Vorteile: Robust und skalierbar Daten werden auf kürzesten Pfaden geroutet Nachteile: Gradienten-setup-Phase teuer Verstärkung guter Pfade Konzetration auf einige Sensorknoten Aufrechterhaltung alternativer Pfade Schleifenfreie Pfade werden mit Interest&Gradienten-Mechanismen nicht garantiert Speicherressourcen begrenzt bestehendes Problem: Knoten nahe der Senke werden mehr belastet

12 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 12 Broadcasting-Based Query Scheme (BBS) Motivation: Knoten nahe der Senke verbrauchen ihre Energie viel schneller als andere Knoten Kürzere Lebenszeit der Knoten um die Senke Partitionierung des Sensornetzes Lebenszeit des Sensornetzes verkürzt Effiziente Unterstützung unterschiedlicher Typen von Aggregierunsanfragen Nachrichtenempfang ist meistens fast genauso energieaufwendig wie Senden von Nachrichten Senke

13 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 13 Type = Max(temperature) Interval = 50 s, Duration = 60 minutes Zone = [100, 100, 200, 200] BBS - Idee Idee: Unterschtützung Zone-basierten Aggregationsanfragen Aufbau lokaler Routing-Bäume in Zielregionen Unterschiedliche Vorgehensweise bei nicht-holistischen und holistischen Anfragen (200, 200) Senke (100, 100) In-Netzwerk-Aggregation nicht möglich z.B. Median(), häufigsterWert()

14 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 14 BBS – Annahmen und Ablauf Annahmen: stationäre Senke mit unbegrenzten Energieressourcen Netzweit eindeutige ID's Sensorknoten kennen ihre Position, die Position der Senke sowohl ID's und Position der Nachbarknoten Ablauf : Anfrageverbreitung durch Fluten oder durch Broadcast an ALLE Knoten Aufbau von Routing-Bäumen mit Wurzeln innerhalb der Zielregion Propagieren von Daten innerhalb lokaler Routing-Bäume Datenweiterleitung vom Wurzelknoten zur Senke Analyse von aktuellen lokalen Routing-Bäumen

15 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 15 BBS – Konstruktion lokaler Routing-Bäume Berechnung von Root Reference Point RP Falls Senke in der Zielregion: Senke wird zu RP Unterschiedliche RP's für holistische und nicht-holistische Anfragen Sensorknoten ist am nächsten zum RP unter allen seinen Nachbarn: Lokale Wurzel evtl. mehrere lokale Bäume Sonst wird ein Knoten aus der Nachbarschaft mit kürzestem Abstand zum RP zum Vaterknoten positionsbasiert gebildet nur aus Sensorknoten der Zielregion Type = Max(temperature) Interval = 30 s, Duration = 60 minutes Zone = [100, 100, 200, 200]

16 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 16 BBS – Weiterleitung von Daten Innerhalb der Zielregion: Jeder Elternknoten sammelt Daten seiner Kinder, bearbeitet sie und eigene Messungen und schickt sie in einem Paket an seinen Vaterknoten lokale Wurzel Senke: Pfad bekannt, falls Anfrage durch Fluten verbreitet wurde Positionsbasiertes (Greedy)Routing Zwischenknoten merken ID's und Sequenznummern von weiterzuleitenden Nachrichten mehrere lokalen Wurzeln erkannt: Datenaggregation für nicht-holistische Anfragen Mehrere lokale Wurzeln nicht erkannt: Mehrere Pfade durch one-hop-Nachbarn der Senke Sub-Aggregations Problem bei holistischen Anfragen lokale Kombination der Routing-Bäume (LRC)

17 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 17 BBS – Route Redirection Nicht-holistische Anfrage Zielregion enthält one-hop-Nachbarn der Senke Energieverbrauch bei Nachrichtenempfang vergleichbar hoch Route Redirection um Empfangskosten zu senken RR-Sensorknoten: two-hop-Nachbarn der Senke S4 S1 S2 S3

18 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 18 BBS – Route Redirection im Detail RR-Sensorknoten ist am nächsten zum Redirection-Reference-Point: Ein am nächsten zu Root-Reference-Point liegender one-hop-Nachbar wird zum Vaterknoten, falls solche Nachbarn existieren Sonst wird er lokale Wurzel S4 S1 S2 S3

19 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 19 Route Red BBS – Route Redirection im Detail Berechnung von Redirection-Reference-Point 1. Fall: Zielregion überschneidet Region-1 in Punkten B und C B P D C QO

20 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 20 BBS – Route Redirection im Detail Berechnung von Redirection-Reference-Point 2. Fall: Zielregion überschneidet Region-1 in Punkten B, P und C B P D C F

21 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 21 BBS – Route Redirection im Detail Berechnung von Redirection-Reference-Point 3. Fall: Zielregion enthält Region-1 B M D C F M: Mitte der Zielregion Verbindet M und sie Senke

22 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 22 BBS - weitere Eigenschaften L okale Wurzeln erschöpfen ihre Energie schnell Zielregionen verteilt im Sensornetz fast immer unterschiedliche lokale Wurzeln Leistungs-Maß: Query Capacity und nicht durchschnittlicher Energieverbrauch 10% - 100% Steigerung der Query Capacity für nicht-holistische Anfragen im Vergleich zu TAG (Spannbäume)

23 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 23 Zusammenfassung Spannbäume Am meisten verbreitet Passen sich Topologieänderungen nicht an Directed Diffusion Datenzenrisch gradientenbasiert Anwendungsabhängig Leistungs-Maß: durchschnittlicher Energieverbrauch pro Knoten Broadcast-Based Query Scheme Zone-basierte Anfragen Konstruktion lokaler Routing-Bäume Positionsbasiert Minimiert Energieverbrauch von Knoten nahe Senke Leistungs-Maß: Query Capacity

24 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 24 Fazit Routing verursacht immer Overhead Routing in Sensornetzen ist anwendungsspeziefisch Trade-off: Enerieeffizienz Optimale Route

25 Seminar Informationsverwaltung in Sensornetzen-Anfragespezifische Routingmechanismen 25 Diskussion FRAGEN ???


Herunterladen ppt "Seminar Informationsverwaltung in Sensornetzen Anfragespezifische Routingmechanismen Maria Kopaigorenko Betreuer: Markus Bestehorn."

Ähnliche Präsentationen


Google-Anzeigen