Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Overview: Plattform-level Methods for Secure Systems

Ähnliche Präsentationen


Präsentation zum Thema: "Overview: Plattform-level Methods for Secure Systems"—  Präsentation transkript:

0 Building Secure Systems
GENERALLY ACCESSIBLE Building Secure Systems Plattform Security – Isolation, Privileges and Server Security Walter Kriha, Computer Science and Media Faculty August 2, 2006

1 Overview: Plattform-level Methods for Secure Systems
Different privilege levels Isolation of components (virtual memory, micro kernels) Interception with Wrappers Virtual Machines Inversion of Control, Dependency Injection Architectures Capabilities Name Spaces, Services and Components Trusted Computing Bases Sandboxes Jails Funnels Code Verification

2 Current Problems and Approaches

3 Distributed, after-the-fact security for home computers
Security Specialists SMS based code control security tools Directory PC with tracking SW update Analysis report MS-Data Center Admins PC with tracking SW office home

4 The Sandbox (Access Domain)
All resources the user has a right to access (ACL) Program started by user object User A object Sandbox object Z CODE service Y service User rights: May do everything! Sandbox Policy: Program X is allowed to use service Y and Object Z Reference Monitor service A Sandbox restricts a users rights! It needs a description containing the rules for a specific domain (constrained program). A reference monitor reads those rules. Every access by the code is intercepted by the monitor and the rules are applied. If the rules do not match the intended access it is blocked. No matter how powerful the users rights are, the code cannot escape the sandbox as long as the reference monitor is not bypassed.

5 Main(string FileName = „foo“)
Process Mapping string to resource Open(fileName) All Files File named „foo“ User has rights for all those files. Process needs the same rights as it does not know which one the user would like to process

6 Main(FileDescriptor) for open file „foo“
Process No mapping from string to resource! Read(FileDescriptor) „foo“ file User has rights for all those files. Process needs NO rights to open user files. Gets open stream as a capability

7 Server Rechte Benötigte Rechte für Aufgabe User F Rechte Ambient Authority Sandbox

8 System Architecture and Security Consequences

9 Immutable Laws of Security?
1. If the data hasn’t crossed a trust boundary, you don’t really care about it. 2. If the threat requires that the attacker is ALREADY running code on the client at your privilege level, you don’t really care about it. 3. If your code runs with any elevated privileges (even if your code runs in a restricted svchost instance) you need to be concerned. 4. If your code invalidates assumptions made by other entities, you need to be concerned. 5. If your code listens on the network, you need to be concerned. 6. If your code retrieves information from the internet, you need to be concerned. 7. If your code deals with data that came from a file, you need to be concerned (these last two are the inverses of rule #1). 8. If your code is marked as safe for scripting or safe for initialization, you need to be REALLY concerned.

10 OS-Architecture and Security Mechanisms

11 CPU Protection Levels 0/1 State of protected mode bit:
1 = protected/kernel mode 0 = application/user mode 0/1 Sensing operations (I/O) Control operations (halt, memory mgmt.) Regular compute operations (add, mul) Most CPUs offer a simple protetion scheme. Dangerous operations (sensing, control) are only allowed when the CPU has been put in kernel mode (protection bit is set). Applications can NOT change the state of the CPU arbitrarily. They MUST use certain controlled gates (software interrupts) to change the mode. From then on, operating system code runs!

12 Switching to Kernel Mode
Application Application stack used User Mode, CPU doing harmless things C Language Library System Call Library Software Interrupt – Kernel Trap (CPU instruction) Kernel Mode, CPU doing critical things Operating System Kernel stack used Hardware (CPU, I/O) Only in kernel mode will the CPU allow critical instructions. The application will be terminated if it tries to execute critical instructions without changing through kernel traps into protected mode.

13 Security Properties of Privilege Modes
Rights/Authority Trick code into extending callers privileges code code code code Attack code on same level code code code code code Turn off privileged mode code

14 Security Properties of Privilege Modes
Rights organized as privilege levels typically lead to ambient authority for code pieces because no sectors are possible within the levels. Most code pieces would need a different segmentation of rights. On the same level each piece of code is a threat to all others (same privileges, no sep.) Every mode change needs to be undone later. Software needs to make sure that on the way back the privilege mode gets reversed to the old value. There cannot be a bypass of this piece of code The mode change needs to be authorized The privileged code needs to interpret arguments carefully to avoid extending the callers privileges in an unwanted way (confused deputy)

15 Address Isolation Same! Virtual Address Physical Address Process A
CPU 256 MB Random Access Memory (physical) Application 2: all addresses in same range as every other app. Memory Management Unit (MMU) Same! Virtual Address 32 bit address register Application 1: all addresses in same range as app 1. page table Process A page table Process B Physical Address Process A Physical Address Process B

16 Monolithic Kernels Data
runtime loadable Application 1 device driver firewall module audio driver User Mode compiletime Kernel Functions memory managment Data Kernel Mode file management process management device drivers Fast access to functions and shared kernel data

17 Microkernels Fast access to functions and shared kernel data
Application 1 process management server Device Driver file management server security management server memory managment server Device Driver User Mode Interprocess comm. basic memory management Kernel Mode Context switching Interrupt handling basic security Clock driver Fast access to functions and shared kernel data Interprocess Communication or system calls

18 From: G.Heiser, Virtualization of Embedded Systems

19 Armored Monolithic Kernels
User Mode Wrapper gurantees transactional updates compiletime memory managment Data Kernel Mode audio driver file management Kernel functions device drivers process management Data Intercepted and controlled calls to and from kernel Temporary Copy of kernel data Modified page table to restrict driver to certain kernel addresses

20 VM Armored Micro Kernels
Data memory managment device drivers file management User Mode Kernel functions process management Inter Kernel Communication Inter Kernel Communication VM VM Microkernel (e.g. L4) Kernel Mode

21 The Secure Extension Problem

22 Kernel Device Driver Driver Controller driverControl() Extern ProcTab tab; Extern int criticalFunc() Init() Read() Write() IOCtrl() HandleInt() Gobal: ProcTab criticalFunc() Resolved at runtime or linktime

23 Kernel Device Driver Dependency injection Driver Controller driverControl() private ProcTab tab; private int criticalFunc() Init(ProctTab, crit.Function) Read() Write() IOCtrl() HandleInt() Gobal: ProcTab criticalFunc() criticalFunc() criticalFunc()

24 Der Driver kann ausschließlich über die Argumente und deren Methoden auf Kernel-Daten oder Funktionen zugreifen. Es gibt keine andere Möglichkeit, auch nicht durch die Navigation von globalen Verzeichnissen oder durch sog. Composite Objects (Design Pattern), die über ihre Tree-Navigation Zugriffe auf viele andere Objekte gestatten. Der Treiber macht eigene Abhängigkeiten und Bedürfnisse im Interface der init-Methode sichtbar: Dort steht, was der Treiber vom Kernel benötigt, um zu funktionieren. Der Kernel ist in der Lage, Proxy Objekte oder speziell für den Treiber zugeschnittene Closures (das sind initialisierte higher-order Functions oder deren objektorientiertes Äquivalent bzw. deren Simulationen durch Command Patterns) herzustellen und an den Treiber zu übergeben. Damit kontrolliert der Kernel komplett die Ausführungsumgebung des Drivers.

25 Framework Plug-in Inject dependency (DI principle) Declare dependency Init(Node) Read() Write() Initiate Call (IOC principle) Use reference (object capability principle) Node Node Node Node does not allow traversal and so plug-in cannot access parent node. The plug-in declares ist dependencies in ist interface

26 Modes and Privileges

27 Same runtime environment for all applications
Cycle stealing applications create a problem for near-realtime multimedia applications A common, navigable filesystem with ambient authority Server (privileged) Application Global Administrator Dangerous accounts, single audit and log features Tons of unsafe but privileged scripts and utilities (setUid) Common Filesystem Lots of unverified system libraries with memory leaks etc. Privileged Utilities >300 complex system calls Huge Libraries Incomplete quota administration System call Interface Countless dynamically loadable modules Module Legacy OS Module Attacks on random number generation Driver Driver Driver Unsafe kernel languages (memory) > drivers for windows Hardware (CPU etc.) Covered channels (cache, bios, CPU) Network scans (IP seq.) Huge TCB, 2 modes only

28 Driver.c: If (uid = 0) { // do something harmless } // run as root now!

29 Interprocess communication
Para-virtualisierung Trusted Computing Base

30

31 Rules for Virtualization/Guest Operating Systems
VMs (die gewöhnlich unter privilegierten Accounts arbeiten) sollen wie andere kompromittierbare Dienste behandelt werden, d.h. am Besten unter Verwendung von Isolationstechniken wie chroot, systrace, ACLs, sowie POLA Regeln. Die Virtuellen Maschinen wie die Gast-Betriebssysteme sollten so schmal wie möglich konfiguriert sein. Ungenutzte Hardware-Treiber oder Services sind auch beim Gast zu entfernen. Die Integrität der Gastsysteme ist genauso zu sichern wie die der Trägermaschinen durch regelmässige Updates, Privilegieneinschränkungen der Gast-Applikationen etc. Systeme die mehrere unterschiedliche Privilegienzonen ermöglichen sind vorteilhaft (XEN). Sicherheitslevel von Plattformen (z.B. Berkeley Security Levels) sind zu nutzen. [Orm] Ressources: Ormandy

32 Software-based Isolation: Singularity

33 Singularity Features Die Kapselung beruht auf leichtgewichtigen Prozessen Kernel, Applikationen, Treiber und System-Server sind allesamt Prozesse Ein Prozess ist ein geschlossener Object-Space, der keine Referenzen in andere Prozesse hinein besitzt IPC ist durch ein Kanalkonzept realisiert, das sich durch streng typisierte Kommunikation, definiert durch State-Machines, auszeichnet Objekte können an andere Prozesse übertragen werden, wechseln dann jedoch den Besitzer, so dass keine cross-process synchronization Probleme oder zentrale Garbage Collection nötig sind. Ein kleiner Teil Code ist unverified und trusted, der große Rest von Microkernel und Applikationen etc. ist verifiably trusted, d.h. er wurde vom sicheren Compiler erzeugt. Es sind keine dynamischen Erweiterungen von Prozessen (Code laden) erlaubt. Jede Erweiterung muss ein eigener Prozess sein. Jede Softwarekomponente ist durch Meta-Daten umfangreich beschrieben und wird ohne eigenen Installer installiert.

34 Small, light-weight processes
No cross object space sharing p2 Safe interprocess communication (separation) p1 One virtual address space Individual runtimes (GC, libraries) Trusted, not verifiably safe

35 Typed channels with state-machines for IPC
Eheap Extension Code Application Code CLR Lib. CLR Lib. Runtime Runtime No common, shared variables between both object spaces

36 public contract NamespaceContract : ServiceContract {
in message Bind(char[] in path, ServiceContract.Exp:Start exp); out message AckBind(); out message NakBind(ServiceContract.Exp:Start exp); in message Notify(char[] in pathSpec, NotifyContract.Imp:Start imp); out message AckNotify(); out message NakNotify(NotifyContract.Imp:Start imp); in message Find(char[] in pathSpec); out message AckFind(FindResponse[] in results); out message NakFind(); out message Success(); override state Start: one { Success! -> Ready; } state Ready: one { Bind? -> ( AckBind! or NakBind! ) -> Ready; Find? -> ( AckFind! or NakFind! ) -> Ready; Notify? -> ( AckNotify! or NakNotify! ) -> Ready; }} Als eingebettete Klassen eines Kanals werden jeweils ein exporter bzw. importer definiert, die die entsprechenden Messages des Kontrakts zugeordnet bekommen. Will ein Prozess einen Kanal eröffnen, dann erzeugt er Instanzen von exporter und importer und schickt die exporter-Instanz über einen existierenden Kanal an den Empfänger. Danach können beide miteinander kommunizieren.

37 <manifest> <application identity="S3Trio64" /> <assemblies> <assembly filename="S3Trio64.exe" /> <assembly filename="Namespace.Contracts.dll" version=" „ /> <assembly filename="Io.Contracts.dll" version=" " /> ….. <assembly filename="ILHelpers.dll" version=" " /> <assembly filename="Singularity.V1.ill" version=" " /> </assemblies> <driverCategory> <device signature="/pci/03/00/5333/8811" /> <ioMemoryRange baseAddress="0xb8000" rangeLength="0x8000„ fixed="True" /> <ioPortRange baseAddress="0x4ae8" rangeLength="0x2" fixed="True" /> …. <extension startStateId="3" contractName="Microsoft.Singularity-.Extending.ExtensionContract" endpointEnd="Exp„ assembly="Namespace.Contracts" /> <serviceProvider startStateId="3" contractName="Microsoft-.Singularity.Io.VideoDeviceContract" endpointEnd="Exp„ assembly="Io.Contracts" /> </driverCategory> </manifest> A manifest file describes the physical structure of an application and its installation needs. Control is never passed to the application for installation purposes (no setup.exe)

38 /bin/sshd @ /users/ted (+ {/grp/pathrole})* + /bin/ms/office/word
Compound Principal

39

40 Tracked data structures with ownership transfer
When creating a TRef<T>, the constructor requires an object of type T as an argument. The caller must have ownership of the object at the construction site. After the construction, ownership has been passed to the newly allocated TRef. The Acquire method is used to obtain the contents of a TRef. If the TRef is full, it returns its contents and transfers ownership to the caller of Acquire. Afterwards, the TRef is said to be empty. Release transfers ownership of a T object from the caller to the TRef. Afterwards, the TRef is full. TRefs are thread-safe and Acquire operations block until the TRef is full.

41 Privilege Reduction vs. Capabilities

42 Privilege Restriction and Separation with Rights Reduction vs Capabilities
Subtractive Model additive Model (default is deny) Root Directory capability Change runtime environment to jail Change owner User change identity to user User Hand directory capability to unprivileged user process. Without capabilities user process cannot access resources Jails strips off other rights

43 Classic *-properties Vista Integrity Levels L2 L2 Write-down Write-down Write-up Write-up Read-down Read-down Read-up Read-up L1 L1 L1 Vista: Lower level unprotected against upper level attacks. Upper level open to luring attacks and data exposure. Ambient authority through queries and messages

44 Systrace in OpenBSD wrapper (etc/systrace) Application System Call: open(/tmp/foo, mode); /etc/systrace (policies) Operating System Systrace Interceptor policy_for_application: native_read filename match „/tmp/*“ then permit Systrace intercepts system calls and evaluates them according to specified policies. By wrapping user shells, applications and daemons most code can be easily sandboxed.

45 Privilege Restriction and Separation with Identities or ACLs
DecreaseMyRights MakeMeAdmin User User Admin Rights Rights Reduce Roles etc. start Extend Roles etc. start Program Privilege Starter Prog. Rights Admin Rights vector start Program Admin Rights vector

46 Polaris The file is edited in the context of a powerless dummy user and then copied back. The application gets the file via the so called „powerbox“ – a GUI component that distributes capabilities upon user request.

47 Windows Operating System
„Sandbox“ Running mail program Polaris Secure Desktop Running Excel program open attachment Execute with macros enabled Copy over Excel file With macros Excel file With macros Copy back Dummy user session with restricted rights Real user session Windows Operating System

48 Secure Server Design and Reduction of Exposure by Software-Architecture

49 Sicherheitsprinzipien beim Server-Design
Isolierung der Server-Prozesse durch chroot oder jails Server-Prozesse laufen als unprivilegierte User Der Zugriff auf die Datenbank sollte minimale Rechte besitzen Verschiedene Funktionalitäten sollten auf verschiedene Prozesse verteilt werden Nach: Maxwell Krohn, Building Secure High-Performance Web Services with OKWS

50 ServerSocket ss = new ServerSocket(port);
for(;;) { Socket client = ss.accept(); BufferedReader in = new BufferedReader( new InputStreamReader(client.getInputStream())); PrintWriter out = new PrintWriter(client.getOutputStream()); while((line = in.readLine()) != null) { // read command (or filename) from network // execute command } out.print(result); David Flanagan, Java Examples in a Nutshell (shortened)

51 VO Realm Task oriented Company Realm App. Realm administrative Task1 DB Realm Task2 Cell Realm technical Appl. DB OS File Resource Network Resource OS Realm

52 Danger of Server Applications
Server sind einfach zu erstellen, bieten aber immer potenzielle Einfallstore für Angreifer. Selbstgebaute Authentisierungen können gefährlich sein. Hohe Rechte für den Server sind gefährlich im Fehlerfall. In den Systemen ist meist viel Ambient Authority verfügbar. Server irren sich bei den Zugriffsrechten (Confused Deputy Problem). Server machen Fehler bei der Umsetzung von Eingabestrings in Ressourcen. Manche Server implementieren sehr verschiedene Funktionen, die es schwierig machen, das gesamte Gefahrenpotential abzuschätzen. Server müssen teilweise privilegierte Operationen ausführen und brauchen daher spezielle Rechte, zumindest für gewisse Zeit. Dies ergibt Angriffsmöglichkeiten. Falls der Aufrufer nicht gegen die Betriebssystem-Registry autorisiert wurde, haben die Betriebssysteme keine Möglichkeit die Aktionen des Servers intern zu kontrollieren. Die Rechte der Aufrufer können weit mehr umfassen, als die Server-Applikation eigentlich benötigen würde. Ohne Sandbox-artige Einschränkung der Server Applikationen existiert auch dadurch Ambient Authority.

53 „Server“ Process (execution Environment) Service Code Server components User State All User Data

54 „Server“ Process Process Service Y Service Y User C State User B State One Process per User- too expensive? (idle users?)

55 „Server“ Process Service Y User A State User F State Process is either single-threaded, event-driven or multithreaded. One Process per Service.

56 „Server“ Process Service X Service Y One Process Many Services Many User (States) User State User State User State User State User State User State User State User State

57 SAP „Server“ Process (execution Environment) Service X Code/Data User A Session Data Memory mapped into Process or Virtual Machine

58 SAP VM

59 Authority Restriction with Secure Software Entities

60 http requests root Config Server Loader Dispatcher Child P. Child P. jail jail request Child Process Child Process Child process Log Service Web Service A Web Service B Log request jail authentication machine DB Proxy DB Proxy Service A partition Service B partition

61 Data in Database Compromised Process which Serves Service C User A data User F data Service C partition

62 Data in Database Compromised Process which Serves Service C User A data User F data Service C partition

63 Data in Database Data relevant for User A + Service C User A data Data relevant for User F + Service C User F data Service C partition

64 Data in Database User A data Compromised Data User F/Serv. C User F data Service C partition

65 Database Views to reduce exposure and use backend access control
Authorized: Service A View for Service A Table with users and Services Authorized: Service B View for Service B

66 Administration and Race Conditions
Not atomic! Root Change runtime environment to jail Change owner change identity to user User Jails strips off other rights

67

68 Malicious Code All resources the user has a right to access (ACL) object what the user wanted object Program started by user object CODE service service what the code did User A service All the resources have an attached ACL which says that user A may access the object. This allows malicious code once started by a user to access and abuse all resources the user has access to.

69 Access Rights (Roles or Identity based Vs. Capability based)
Principles and Patterns: POLA, Authority + Designation No side-effects Closures Forced Interceptors Usability Application/Server Architecture (Runtime Authority, Modularity) Security Libraries and Frameworks Computer Languages and VM‘s (Type Safety) Operating System and Kernel (Device Drivers, Rights Management) Hardware (e.g. Crypto Processors)

70 Threats: Buffer Overflow Attack on Server Application (external) Administrator rights abuse Kernel Network stack vulnerability Weak keys in application (e.g. SSO) Race condition attack on admin scripts shatter attack (windows) root-kit placement from CD or DVD resource hogging application (cycle stealer) Input validation problem in application Bad device drivers (stability, malicious code)

71 Teure Adressraum-Umschaltungen
Grosse TCBs Effiziente IPC IO (speziell DMA) nicht virtualisierbar auf manchen Plattformen Cache Management (coloring) Wenig Privilegien-Schichten auf manchem Plattformen

72 OSGI Mission Critical Security
Java Code Security (Protection domain = Codebase, Signature, Principal) Added permissions for administration and service management Service registry and service interfaces to control export/import and use of services and packages with the help of the class loader OSGI is a first step towards a reliable, type-safe platform for mission critical applications in homes, cars and industries. But it is not perfect: class loaders are a terrible way to achieve isolation. Service management is coarse grained and not expressive enough (e.g. if there are two similiar services available I‘d like number A). The difficulty is to allow the addition or removal of services ANY TIME. Interesting combinations of OSGI and Peer-to-Peer technologies (JXTA) are currently investigated.

73 Objcect Capabilities Fine-Grained Authority Reduction
Each application or module gets only as much authority as it needs for the job. This allows safe plug-ins like the renderer for a mail type. From the DARPA browser study (www.combex.org)


Herunterladen ppt "Overview: Plattform-level Methods for Secure Systems"

Ähnliche Präsentationen


Google-Anzeigen