Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Fakultät für informatik informatik 12 technische universität dortmund Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany.

Ähnliche Präsentationen


Präsentation zum Thema: "Fakultät für informatik informatik 12 technische universität dortmund Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany."—  Präsentation transkript:

1 fakultät für informatik informatik 12 technische universität dortmund Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany 2009/12/15 © These slides use Microsoft cliparts. All Microsoft restrictions apply. Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

2 - 2 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Structure of this course 2: Specification 3: ES-hardware 4: system software (RTOS, middleware, …) 8: Test 5: Validation & Evaluation (energy, cost, performance, …) 7: Optimization 6: Application mapping Application Knowledge Design repository Design Numbers denote sequence of chapters

3 - 3 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Classes of mapping algorithms considered in this course Classical scheduling algorithms Mostly for independent tasks & ignoring communication, mostly for mono- and homogeneous multiprocessors Dependent tasks as considered in architectural synthesis Initially designed in different context, but applicable Hardware/software partitioning Dependent tasks, heterogeneous systems, focus on resource assignment Design space exploration using genetic algorithms Heterogeneous systems, incl. communication modeling

4 - 4 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Classification of Scheduling Problems Scheduling Independent Tasks EDD, EDF, LLF, RMS Dependent Tasks Resource constrained Time constrained Uncon- strained ASAP, ALAP FDSLS 1 Proc. LDF

5 - 5 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Dependent tasks The problem of deciding whether or not a schedule exists for a set of dependent tasks and a given deadline is NP-complete in general [Garey/Johnson]. Strategies: 1.Add resources, so that scheduling becomes easier 2.Split problem into static and dynamic part so that only a minimum of decisions need to be taken at run-time. 3.Use scheduling algorithms from high-level synthesis

6 - 6 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Taskgraph Assumption: execution time = 1 for all tasks a bcdefg hij klm n z

7 - 7 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund As soon as possible (ASAP) scheduling ASAP: All tasks are scheduled as early as possible Loop over (integer) time steps: Compute the set of unscheduled tasks for which all predecessors have finished their computation Schedule these tasks to start at the current time step.

8 - 8 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund As soon as possible (ASAP) scheduling: Example =0 =2 =3 =4 =5 a bcdefg hij klm n z =1

9 - 9 - technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund As-late-as-possible (ALAP) scheduling ALAP: All tasks are scheduled as late as possible Start at last time step*: Schedule tasks with no successors and tasks for which all successors have already been scheduled. * Generate a list, starting at its end

10 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund As-late-as-possible (ALAP) scheduling: Example =0 =2 =3 =4 =5 Start a bcdefg hij klm n z =1

11 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund (Resource constrained) List Scheduling List scheduling: extension of ALAP/ASAP method Preparation: Topological sort of task graph G=(V,E) Computation of priority of each task: Possible priorities u : Number of successors Longest path Mobility = (ALAP schedule)- (ASAP schedule) Source: Teich: Dig. HW/SW Systeme

12 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Mobility as a priority function urgent less urgent Mobility is not very precise =1 =2 =3 =4 =5 =1 =2 =3 =4 =5 a bcdefg hij klm n z =0 a bcdefg hij klm n z

13 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Algorithm List( G(V,E), B, u ){ i :=0; repeat { Compute set of candidate tasks A i ; Compute set of not terminated tasks G i ; Select S i A i of maximum priority r such that | S i | + | G i | B (*resource constraint*) foreach ( v j S i ): ( v j ):= i ; (*set start time*) i := i +1; } until (all nodes are scheduled); return ( ); } Complexity: O (| V |) may be repeated for different task/ processor classes

14 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Example Assuming B =2, unit execution time and u : path length u (a)= u (b)=4 u (c)= u (f)=3 u (d)= u (g)= u (h)= u (j)=2 u (e)= u (i)= u (k)=1 i : G i =0 ab i cf g hj k d e a b c f g d e h i j k =0 =1 =2 =3 =4 =5 Modified example based on J. Teich

15 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund (Time constrained) Force-directed scheduling Goal: balanced utilization of resources Based on spring model; Originally proposed for high-level synthesis * [Pierre G. Paulin, J.P. Knight, Force-directed scheduling in automatic data path synthesis, Design Automation Conference (DAC), 1987, S ] © ACM

16 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Phase 1: Generation of ASAP and ALAP Schedule =1 =2 =3 =4 =5 =1 =2 =3 =4 =5 a bcdefg hij klm n z =0 a bcdefg hij klm n z

17 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Next: computation of forces Direct forces push each task into the direction of lower values of D(i). Impact of direct forces on dependent tasks taken into account by indirect forces Balanced resource usage smallest forces For our simple example and time constraint=6: result = ALAP schedule i =1 =2 =3 =4 =5 a bcdefg hij klm n z =0 More precisely …

18 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 1.Compute time frames R ( j ) 2. Compute probability P(j,i) of assignment j i R ( j )={ASAP-control step … ALAP-control step} if 0 otherwise

19 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 3. Compute distribution D(i) (# Operations in control step i ) P(j,i)D(i)D(i)

20 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 4. Compute direct forces (1) P i ( j, i): for force on task j in time step i, if j is mapped to time step i. The new probability for executing j in i is 1; the previous was P ( j, i ). The new probability for executing j in i i is 0; the previous was P ( j, i ). i if otherwise

21 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 4. Compute direct forces (2) SF ( j, i ) is the overall change of direct forces resulting from the mapping of j to time step i. Example otherwise if

22 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 4. Compute direct forces (3) Direct force if task/operation 1 is mapped to time step 2

23 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 5. Compute indirect forces (1) D Mapping task 1 to time step 2 implies mapping task 2 to time step 3 Consider predecessor and successor forces: P j, i ( j, i) is the in the probability of mapping j to i resulting from the mapping of j to i j predecessor of j j successor of j

24 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund 5. Compute indirect forces (2) Example: Computation of successor forces for task 1 in time step 2 j predecessor of j j successor of j

25 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Overall forces The total force is the sum of direct and indirect forces: In the example: The low value suggests mapping task 1 to time step 2

26 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Overall approach procedure forceDirectedScheduling; begin AsapScheduling; AlapScheduling; while not all tasks scheduled do begin select task T with smallest total force; schedule task T at time step minimizing forces; recompute forces; end; end May be repeated for different task/ processor classes Not sufficient for today's complex, heterogeneous hardware platforms

27 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Evaluation of HLS-Scheduling Focus on considering dependencies Mostly heuristics, few proofs on optimality Not using global knowledge about periods etc. Considering discrete time intervals Variable execution time available only as an extension Includes modeling of heterogeneous systems

28 technische universität dortmund fakultät für informatik p. marwedel, informatik 12, 2009 TU Dortmund Conclusion HLS-based scheduling ASAP ALAP List scheduling (LS) Force-directed scheduling (FDS) Evaluation


Herunterladen ppt "Fakultät für informatik informatik 12 technische universität dortmund Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany."

Ähnliche Präsentationen


Google-Anzeigen