Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Softwaretechnologie für Fortgeschrittene Teil Thaller Stunde III: Bildverarbeitung III Köln 2. Dezember.

Ähnliche Präsentationen


Präsentation zum Thema: "Softwaretechnologie für Fortgeschrittene Teil Thaller Stunde III: Bildverarbeitung III Köln 2. Dezember."—  Präsentation transkript:

1 Softwaretechnologie für Fortgeschrittene Teil Thaller Stunde III: Bildverarbeitung III Köln 2. Dezember

2 Nachbarschaftstransformationen 2 Basisvorgehen: for (int y=1;y

3 Nachbarschaftstransformationen 3 Beispiel für eine Nachbarschaftstransformation: static int Xoffset[] = { -1, 0, 1, -1, 0, 1, -1, 0, 1}; static int Yoffset[] = { -1, -1, -1, 0, 0, 0, 1, 1, 1}; width=image.width(); switch(action) { case TINMinimum: result=255; for (int i=0;i < 9; i++) { candidate = *(baseline + (width*Yoffset[i]) + x + Xoffset[i]); if (candidate < result) result=candidate; } break;

4 Nachbarschaftstransformationen 4 Hervorheben von Intensitätsänderungen – X Differenz for (int y=0;y

5 Nachbarschaftstransformationen 5 NB: Partielle Transformationen können in Bilder „eingeschrieben“ werden – Übergangsbetonung durch Einrechnen XY Differenz: step1=TIcontrastS(TIXYdifference(image)); for (int y=0;y= 128) ? 0 : *(image.scanLine(y) + x);

6 Filteroperationen : Nachbarschaften 6 Auf der operativen – nicht mathematischen – Ebene können Filter als multiplikative Nachbarschaftstransformationen verstanden werden.

7 Filteroperationen : Nachbarschaften 7 Filteranwendung 1 / 2: static int filter[4][9]= { 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0 = low pass 1 */ 0, 1, 0, 1, 1, 1, 0, 1, 0, /* 1 = low pass 2 */ 0,-1, 0,-1, 5,-1, 0,-1, 0, /* 2 = high pass 1 */ -1,-1,-1,-1, 9,-1,-1,-1,-1 /* 3 = high pass 2 */ }; static int divisor[4] = {9,5,1,1}; unsigned char *baseline; for (int y=1;y

8 Filteroperationen : Nachbarschaften 8 Wobei gilt (Filteranwendung 2 / 2): int Xoffset[] = { -1, 0, 1, -1, 0, 1, -1, 0, 1}; int Yoffset[] = { -1, -1, -1, 0, 0, 0, 1, 1, 1}; width=image.width(); collect=0; for (int i=0;i < 9; i++) collect += *(baseline + (width*Yoffset[i]) + x + Xoffset[i]) *filter[i]; result = collect / divisor;

9 Filter: 9 Dementsprechend, die wichtigsten Filter: static int filter[15][9]= { 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0 = low pass 1 */ 0, 1, 0, 1, 1, 1, 0, 1, 0, /* 1 = low pass 2 */ 0,-1, 0,-1, 5,-1, 0,-1, 0, /* 2 = high pass 1 */ -1,-1,-1,-1, 9,-1,-1,-1,-1, /* 3 = high pass 2 */ 1, 2, 1, 2, 4, 2, 1, 2, 1, /* 4 = W.Mean 1 */ 0, 1, 0, 1, 2, 1, 0, 1, 0, /* 5 = W.Mean 2 */ 0, 1, 0, 1,-4, 1, 0, 1, 0, /* 6 = Laplace 1 */ -1,-1,-1,-1, 8,-1,-1,-1,-1, /* 7 = Laplace 2 */ 0,-1, 0,-1, 7,-1, 0,-1, 0, /* 8 = Laplace 3 */ -1,-1,-1, 0, 0, 0, 1, 1, 1, /* 9 = Prewitt A */ -1, 0, 0, 0, 0, 0, 0, 0, 1, /* 10 = Roberts A */ -1,-2,-1, 0, 0, 0, 1, 2, 1, /* 11 = Sobel A */ 1, 0,-1, 1, 0,-1, 1, 0,-1, /* 12 = Prewitt B */ 0, 0,-1, 0, 0, 0, 1, 0, 0, /* 13 = Roberts B */ -1, 0, 1,-2, 0, 2,-1, 0, 1 /* 14 = Sobel B */ }; static int divisor[15] = {9,5,1,1,16,6,1,1,3,1,1,1,1,1,1}; static int absolute[15] = {0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1};

10 Transformationen des Fourier Typs 10 Prinzip: Die Zuordnung von Helligkeitswerten zu Punkten wird durch eine andere geometrisch / mathematische Interpretation derselben numerischen Werte ersetzt. Fourier: Die räumliche Verteilung von Helligkeitswerten kann durch eine Bündelung von Frequenzwerten ersetzt werden.

11 Transformationen des Fourier Typs 11 Beispielsweise ist leicht nachvollziehbar, dass im Bild jede Zeile des Bildes auch als eine „Schwingung“ verstanden werden kann, deren „hohe“ Amplitude besonders „hell“, deren „niedrige“ besonders „dunkel“ ist.

12 Transformationen des Fourier Typs 12 Wenn dies so ist, kann dieses Bild offensichtlich durch Angabe der Schwingungsdauer und der Amplitude dargestellt werden. Wird dies weitergedacht, kann man konzeptuell jeden Punkt eines Punktes dadurch beschreiben, dass man behauptet, das Bild von n x m Pixeln stelle n x m Schwingungen dar, von denen jede an genau einem der Pixel jene Ausprägung der Amplitude habe, die dem Helligkeitswert dieses Pixels entspräche.

13 Transformationen des Fourier Typs 13 Fouriertransformationen sind relativ anspruchsvoll effektiv zu optimieren; werden deshalb NICHT im Quellcode besprochen. Sie sind aber EXTREM wichtig. Wichtig ist, folgende Eigenschaften festzuhalten:

14 Transformationen des Fourier Typs 14 (1) Fouriertransformationen sind voll umkehrbar:

15 Transformationen des Fourier Typs 15 (2) Transformierte Bilder können zielgerichtet bearbeitet werden:

16 Transformationen des Fourier Typs 16 (2) Transformierte Bilder bestehen üblicherweise aus überwiegend sehr viel kleineren Zahlenwerten:

17 II. Bildspeicherung und Kompression 17 Techniken zum Transfer von Bytestreams aus der linearen Form (Platte) in strukturierte Form (Memory).

18 Binäres Lesen (Qt flavour) 18 „Lesen“ imageFile.seek(ifd_addr); imageFile.read((char *)buffer,n); „Schreiben“ imageFile.seek(ifd_addr); imageFile.write((char *)buffer,n); „Position merken“ ifdstart = imageFile.pos();

19 Komprimieren 19 Run Length Encoding while(line > 0) { c = *(source)++; if (c < 0) { count = c * ; memset(target, *source, count); source++; } else { count = c + 1; memcpy(target, source, count); source += count; } line -= count; target += count; }

20 Komprimieren 20 CCITT / Huffmann Encoding (bitonal) 1 / 3 while(gotten width) { if ((runlength=TIfetchrun(&ccitt,buffer,0,&err))<0) goto cleanup; memset(target,usecolor[0],runlength); target+=runlength; gotten+=runlength; if (gotten>=header->width) break; if ((runlength=TIfetchrun(&ccitt,buffer,1,&err))<0) goto cleanup; memset(target,usecolor[1],runlength); target+=runlength; gotten+=runlength; }

21 Komprimieren 21 CCITT / Huffmann Encoding (bitonal) 2 / 3

22 Komprimieren 22 CCITT / Huffmann Encoding (bitonal) 3 / 3

23 Komprimieren 23 Lempel-Ziv & Welch (LZW) 1 / 2 InitializeStringTable(); WriteCode(ClearCode); W = the empty string; for each character in the strip { K = GetNextCharacter(); if W+K is in the string table { W = W+K; /* string concatenation */ } else { WriteCode (CodeFromString(W)); AddTableEntry(W+K); W = K; } WriteCode (CodeFromString(W)); WriteCode (EndOfInformation);

24 Komprimieren 24 Lempel-Ziv & Welch (LZW) 2 / 2 static int shifts[4][8] = { 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 13, 12, 11, 10, 9, 8, 7, 6, 12, 11, 10, 9, 8, 7, 6, 5 }; int raw, use; use = lzw->lzwbits >> 3; if (use >=max) return TiffLZWEOI; raw = (raster[use] << 8) + (raster[use + 1]); if (lzw->lzwcs>9) raw= (raw<<8) + (raster[use + 2]); raw >>= shifts[lzw->lzwcs-9][lzw->lzwbits % 8]; lzw->lzwbits += lzw->lzwcs; return (raw&lzw->lzwmask);

25 Komprimieren 25 JPEG Sechs Schritte zum s/w JPEG Image 1.In Blöcke gruppieren; Zentrieren um Null. 2.DCT jedes Blocks. 3.Elimieren einiger Werte durch "quantization". 4.8 x 8 Blöcke  lineare Sequenz, per Entropy Encoding. 5.Run length encoding. 6.Huffman encoding. Vor diesen Schritten im 24 Bit Fall: Transformation RGB  YCbCr.

26 Danke für heute! 26


Herunterladen ppt "Softwaretechnologie für Fortgeschrittene Teil Thaller Stunde III: Bildverarbeitung III Köln 2. Dezember."

Ähnliche Präsentationen


Google-Anzeigen