Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Leitfähige Kunststoffe

Ähnliche Präsentationen


Präsentation zum Thema: "Leitfähige Kunststoffe"—  Präsentation transkript:

1 Leitfähige Kunststoffe
PC-F-Seminar

2 Leiter, Halbleiter und Isolatoren
Voraussetzung für elektrische Leitung: Existenz von Ladungsträgern und deren Fähigkeit, sich zu bewegen Leitfähigkeit σ = n · μ · e n = Zahl der Ladungsträger (Elektronen) μ = Beweglichkeit der Ladungsträger e = Elementarladung Leiter (Metalle): Elektronengas Gesättigte Polymere: Isolatoren, keine intrinsische Leitfähigkeit Frage: wozu zählen konjugierte Polyene?

3 Polyacetylen - seine Geschichte
• zwei isomere Formen: trans und cis • 1955 erstmals als schwarzes Pulver synthetisiert • 1967: Hideki Shirakawa stellt Polyacetylen als silbrig- glänzenden Film her (Ziegler-Natta-Katalysatoren) • Untersuchungen ergaben: schlechter Halbleiter (10-3 S/m) Fragen: - warum nur schlechter Halbleiter? - warum leitet trans-PA besser als cis-PA? - wie kann PA in Leiter überführt werden? - wie unterscheiden sich andere konjugierte Polyene von PA?

4 Warum Polyacetylen kein Leiter ist
Erwartet: Chemische Formel: (CH)n => PA wäre metallischer Leiter! Aber: Peierls-Instabilität eindimen- sionaler Metalle Aufspaltung in Valenz- und Leitungs- band mit Bandlücke, denn: Fermikante wird energetisch abgesenkt! (analog: Jahn-Teller-Effekt) Bindungslängen nicht gleich, sondern alternierend! (6% Unterschied) chemische Formel ist (-CH=CH-)n

5 Warum trans-PA besser als cis-PA leitet
trans-PA: 10-3 S/m cis-PA: 10-7 S/m Geringe Leitfähigkeit (Halbleiter) aufgrund von strukturellen Defekten Umwandlung von cis- in trans-PA bei 145°C cis-PA hingegen: keine zwei entarteten Zustände

6 PA wird leitfähig: das Prinzip der Dotierung
• 1976: Shirakawa, MacDiarmid und Heeger behandeln PA mit Oxidationsmitteln (Iod, Brom) 2000: Nobelpreis für Chemie => Goldfärbung, Leitfähigkeit stieg um 4-7 Zehnerpotenzen => Leiter! => Dotierung • Leitfähigkeit steigt mit Menge des zugegebenen Oxidationsmittels:

7 PA wird leitfähig: das Prinzip der Dotierung
=> Polaron („Loch“) Zugabe von Ox´mitteln => Entfernung eines Elektrons Problem: Beweglichkeit einge- schränkt wegen entgegengesetzt geladenen Dotiermolekülen => Lösung: hohe Dotierung Im Bändermodell: Midgap-Zustand leer Anschließend Bildung von Löchern im p-Band

8 Leitendes PA So verläuft Dotierung und anschließender Ladungstransport: Intermolekulare Leitfähigkeit durch Intersoliton-hopping:

9 Mögliche Arten der Dotierung
1. Redoxdotierung: Zahl der Elektronen im Polymerrückgrat ändert sich • p-Dotierung: Oxidation (z.B.: mit Halogenen) • n-Dotierung: Reduktion (z.B.: mit Na-amalgam) 2. Photodotierung: gleichzeitiges Erzeugen von freien Elektronen und Löchern durch Bestrahlung 3. Dotierung mit Protonensäuren (Polyanilin) => Ladungsneutralität!

10 Weitere konjugierte Polyene
• Polyanilin (PANI): Oxidierte und reduzierte Form: Besonderheit: Überführung in leitfähigen Zustand durch Protonierung! • Polythiophen und Polypyrrol: Besonderheit: sind selbstdotierend! • Poly(para-phenylen) (PPP): • Poly(para-phenylen-vinylen) (PPV):

11 Vorteile leitender Polymere
=> synthetische Metalle • Leichte Verarbeitbarkeit (dünne Filme aus Lösung) • Film- und Faserbildung • Leitfähigkeitsgebiet groß und variabel: 10-8 bis 106 S/m: von Isolatoren über Halbleiter bis Metalle • Elastizität / Flexibilität • Geringes Gewicht • Geringe Kosten • Einsatz als permanent dotierte Metalle oder als Halbleiterpolymere ohne Dotierung mit extern herbeigeführter Leitfähigkeit • PANI: reversible Oxidation bzw. Reduktion unter Farbänderung

12 Anwendungen für leitfähige Polymere
• Korrosionsinhibitor • Antistatische Beschichtungen / Ummantelungen • Elektromagnetische Abschirmungen • Nanoelektronische Schaltungen und Bauelemente • Polymerbatterie • „Intelligente“ Fenster • LEDs

13 Neg. Elektrode: Lithium
Polymerbatterie Neg. Elektrode: Lithium Pos. Elektrode: Polymer In LiClO4-Lösung

14 Anwendungen für leitfähige Polymere II
„intelligente Fenster“ • Thermotrope Fenster Mischung (Blend) zweier Polymere - reagiert auf Wärme Niedrige Temperatur: homogene Schicht, durchsichtig Ab bestimmter Temperatur: Kornstrukturbildung => „Milchglas“ • Elektrochrome Fenster Je nach angelegter Spannung können Polymere unterschiedliche Farben annehmen. Können passierende Lichtmenge variieren. PANI: Gelb  Grün  Blau (je nach Größe & Polarität der Spannung) => mit Farbwechsel ändert sich (IR-)Lichtdurchlässigkeit

15 Literatur • M.Rehahn, Chemie in unserer Zeit 2003, 37, 18-30
• H. Shirakawa, Angew. Chem. 2001, 113, • A.G. MacDiarmid, Angew. Chem. 2001, 113, • A.J.Heeger, Angew. Chem. 2001, 113, • W.Gans, Spektrum der Wissenschaft 2000, 17-19 • ( ) • ( ) • P.Yam, B.Weßling, Spektrum der Wissenschaft 1995,


Herunterladen ppt "Leitfähige Kunststoffe"

Ähnliche Präsentationen


Google-Anzeigen