Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Vorlesung Wasserwirtschaft & Hydrologie I

Ähnliche Präsentationen


Präsentation zum Thema: "Vorlesung Wasserwirtschaft & Hydrologie I"—  Präsentation transkript:

1 Vorlesung Wasserwirtschaft & Hydrologie I
Themen: Wasserkreislauf Aggregatzustände von Wasser Niederschlagsbildung, -arten, Kennzahlen Niederschlagsmessung

2 Lehrziele der Veranstaltung
erschaffen bewerten analysieren anwenden Sie können selbstständig festlegen, welches Messverfahren für eine bestimmte wasserwirtschaftliche Aufgabenstellungen maßgeblich ist. verstehen … und verstehen deren Unterschiede. … und wissen, wann sie angewendete werden können. erinnern Sie kennen die verschiedenen Arten der Niederschlagsentstehung ... Sie kennen die Verfahren zur Niederschlagsmessung …

3 Der Wasserkreislauf Wasserhaushaltsgleichung:
Niederschlag = Abfluss + Verdunstung + Speicheränderung

4 Aggregatzustände des Wassers
Verdunstung Kondensation

5 Aggregatzustände des Wassers
Schmelzen Gefrieren

6 Aggregatzustände des Wassers
Sublimation Deposition Die roten Pfeile geben Prozesse an, bei denen Wärme verbraucht wird; blaue Pfeile stellen Prozesse dar, bei denen Wärme freigesetzt wird.

7 Wasserdampfsättigung
Als Faustformel gilt für den Temperaturbereich zwischen 5°C und 30°C Sättigungsfeuchte [g/m³] ≈ Temperatur [°C]

8 Wasserdampfsättigung
Ausgangssituation: Temperatur: 20°C relative Luftfeuchtigkeit: 50%  Wassergehalt: 8,6 g/m³

9 Wasserdampfsättigung
Die Lufttemperatur fällt beim Aufsteigen um 1,0 °C je 100 Höhenmeter (trockenadiabatischer Aufstieg) Ausgangssituation: Temperatur: 20°C relative Luftfeuchtigkeit: 50%  Wassergehalt: 8,6 g/m³

10 Wasserdampfsättigung
Veränderungslage: Temperatur: 10°C Wassergehalt: 8,6 g/m³  relative Luftfeuchtigkeit: 92% Die Lufttemperatur fällt beim Aufsteigen um 1,0 °C je 100 Höhenmeter (trockenadiabatischer Aufstieg)

11 Temperaturgradient in der Atmosphäre
Wenn erwärmte Luftmassen auf-steigen, reduziert sich die Temperatur, da der Luftdruck mit der Höhe abnimmt und durch die Ausdehnung eine Abkühlung induziert wird. Quelle: Springerverlag

12 Temperaturgradient in der Atmosphäre
Bei trockener Luft reduziert sich die Temperatur jeweils um 1°C je 100 Höhenmeter. Quelle: Springerverlag

13 Temperaturgradient in der Atmosphäre
Falls die Luftmassen größere Wasser-mengen beinhalten, kommt es (je nach Luftfeuchtigkeit und Temperatur) zur Kondensation. Dieser Prozess gibt Wärme frei, so dass sich die Abkühlung auf rund 0,5°C je 100m reduziert. Quelle: Springerverlag

14 Feuchtadiabatischer Temperaturgradient
500 1000 1500 2000 2500 3000 3500 Höhe [m] Feuchtadiabate Kondensationsniveau 1250 Adiabate (Trockenadiabate) -5 5 10 15 20 25 Temperatur [C°]

15 stabile Schichtung Höhe adiabatische Temperaturänderung
Das Luftpacket ist kälter als die Umgebungsluft und somit schwerer ═› das Luftpacket sinkt automatisch wieder auf die Ausgangshöhe h h1 Th1 Th h Th2 aktuelle Temperatur - Höhenkurve Temperatur

16 stabile Schichtung Höhe adiabatische Temperaturänderung
Das Luftpacket ist wärmer als die Umgebungsluft und somit leichter ═› das Luftpacket steigt automatisch wieder auf die Ausgangshöhe h Eine derartige stabile Schichtung wird als unteradia-batische Schichtung bezeichnet h1 Th1 Th h Th2 aktuelle Temperatur - Höhenkurve h2 Temperatur

17 labile Schichtung Höhe adiabatische Temperaturänderung
Das Luftpacket ist wärmer als die Umgebungsluft und somit auch leichter ═› das Luftpacket wird weiter steigen h1 Th1 Th aktuelle Temperaturkurve h Th2 Temperatur

18 labile Schichtung Höhe adiabatische Temperaturänderung
Das Luftpacket ist kälter als die Umgebungsluft und somit auch schwerer ═› das Luftpacket sinkt weiter ab Eine derartige labile Schichtung wird als überadiabatische Schichtung bezeichnet h1 Th1 Th aktuelle Temperaturkurve h Th2 h2 Temperatur

19 Wolkentypen Die Feuchtigkeit liegt in den Wolken temperaturabhängig in Wasser- oder Eisform vor. Die Entstehung von Wassertropfen aus kondensierendem Wasserdampf ist an winzige Staub-partikel gebunden. Bildquelle: Springerverlag

20 Niederschlagsbildung
Bei der Entstehung von Niederschlägen kann man grundsätzlich zwischen zwei Entstehungsprozessen unterscheiden: Koagulation: Die Wassertropfen in den Wolken stoßen zusammen und durch die Anlagerung entstehen größere Wassertropfen, die im Regelfall als Niesel- oder Sprühregen auf die Erde fallen. Der Prozess der Koagulation dauert in der Regel sehr lange, so dass sich hierbei selten große Wassertropfen bilden können. Sublimation: Je nach Einfluss der Temperatur sowie des Luftdruckes gehen Wassertropfen beim Frieren in Eiskristalle über. An diese Eis-kristalle lagern sich ständig weitere gefrierende Wassertropfen an, so dass sich Eisklumpen bilden, die zur Erde fallen. Dieser Prozess verläuft (im Gegensatz zur Koagulation) sehr schnell, so dass sich ein Eiskristall in nur 20 Minuten um das fache vergrößern kann.

21 Niederschlagsbildung
Bei der Entstehung von Niederschlägen kann man grundsätzlich zwischen zwei Entstehungsprozessen unterscheiden: Koagulation: => Nieselregen oder Sprühregen Sublimation: => Starkregen

22 Niederschlagsarten Niederschlagsarten Niederschlagsarten Nieselregen
Niesel- oder Sprühregen entsteht durch Koagulationsprozesse in tiefen Stratuswolken

23 Niederschlagsarten Niederschlagsarten Niederschlagsarten Landregen
Langanhaltende Niederschlagsereignisse mit geringer Intensität entstehen im Regelfall an Nimbostratuswolken. Dabei tritt ebenfalls der Prozess der Koagulation auf, wobei es in Mischwolken bei einer ausreichend langen Dauer zur Bildung mittelgroßer Regentropfen kommt.

24 Niederschlagsarten Niederschlagsarten Niederschlagsarten Schauer
Kurze Niederschlagsereignisse mit hoher bis sehr hoher Intensität. Der Entstehungsprozess ist auf die Koagulation von Wasserdampf in Cumulonimbuswolken zurückzuführen; es entstehen dabei große Regentropfen.

25 Extreme Niederschläge in 5b-Wetterlagen
Resultat: Bildquelle: dpa

26 Niederschlag Definition gemäß DIN 4049
“Niederschlag ist das Wasser der Atmosphäre, das nach Kondensation oder Subli-mation von Wasserdampf in der Lufthülle ausgeschieden wird und sich infolge der Schwerkraft entweder zur Erdoberfläche bewegt (fallender Niederschlag) oder zur Erdoberfläche gelangt ist (gefallener Niederschlag).”

27 Niederschlag Allgemeinere Beschreibung:
Bei Niederschlag handelt es sich um jede Erscheinungs-form von Wasser, welches aus der Atmosphäre auf die Erde gelangt. Es kann sich dabei um folgende Formen handeln: Regen Schnee Hagel Eiskugeln/Eisstücke  5-10mm Graupel Eisgebilde  2-5mm Tau durch Kondensation abgesetzter Reif Niederschlag

28 Niederschlagsverlauf

29 Niederschlag Charakteristische Größen des Niederschlags
Niederschlagshöhe hN [mm] Niederschlagsdauer TN [h] Niederschlagsintensität iN (t) [mm/h] Häufigkeit bzw. Jährlichkeit Tn = 1/n

30 Mittlere jährliche Niederschlagshöhe
450 500 550 600 700 800 900 1000 1100 1400 1600 1800 1200 Niederschlagshöhe in [mm] Als Größenordnung: Mittlerer Niederschlag in Aachen: 805 [mm/a] Bildquelle: Hydrologischer Atlas Deutschland

31 Mittlere jährliche Niederschlagshöhe Norddeutschland
450 500 550 600 700 800 900 1000 1100 1400 1600 1800 1200 Niederschlagshöhe in [mm] Bildquelle: Hydrologischer Atlas Deutschland

32 Mittlere jährliche Niederschlagshöhe Süddeutschland
450 500 550 600 700 800 900 1000 1100 1400 1600 1800 1200 Niederschlagshöhe in [mm] Bildquelle: Hydrologischer Atlas Deutschland

33 Niederschlagshöhen in Deutschland
Nord-Süd-Schnitt der Rasterfelder mittlerer jährlicher Niederschlagshöhen des Bezugszeitraumes in 10° 10´ östlicher Lage Bildquelle: Hydrologischer Atlas Deutschland

34 Exemplarische Monatsniederschläge
Bildquelle: Hydrologischer Atlas Deutschland

35 Starkniederschlagshöhen [Dauer 24h]
30 40 50 60 70 80 100 120 140 180 160 Niederschlagshöhe in [mm] D = 24h, T = 1a Niederschlagshöhe in [mm] D = 24h, T = 100a Bildquelle: Hydrologischer Atlas Deutschland Größter Niederschlag in Deutschland innerhalb von 24h: 312 [mm/d] im Erzgebirge August 2002 (=> Jahrhunderthochwasser Elbe)

36 Starkniederschlagshöhen [Dauer 72h]
30 40 50 60 70 80 100 120 140 180 160 Niederschlagshöhe in [mm] D = 72h, T = 1a Niederschlagshöhe in [mm] D = 72h, T = 100a 210 240 270 Bildquelle: Hydrologischer Atlas Deutschland

37 Starkregen Starkregenereignisse erlangen in der wasserwirtschaftlichen (Bemessungs)Praxis immer mehr an Bedeutung. Der Deutsche Wetterdienst warnt in zwei Stufen vor derartigen Ereignissen (bei denen viel Niederschlag in einer kurzen Zeit anfällt). Wetterwarnung: Niederschlag >= 10 mm in 1 Stunde => i = 10 [mm/h] oder Niederschlag >= 20 mm in 6 Stunden => i = 3,33 [mm/h] Unwetterwarnung: Niederschlag >= 25 mm in 1 Stunde => i = 25 [mm/h] oder Niederschlag >= 35 mm in 6 Stunden => i = 5,83 [mm/h]

38 Gemessene Starkniederschlagshöhen
126 mm Füssen, Kr. Ostallgäu 8 Minuten 40 Potsdam 30 Minuten 180 Daudenzell, Kr. Neckar-Odenwald 60 Minuten 145 Marienberg, Mittlerer Erzgebirgskreis 90 Minuten 112 Schwerin 6 Stunden 260 Zeithain, Kr. Riesa-Großenhain 24 Stunden 06./ 312 Zinnwald-Georgenfeld, Weißeritzkreis 1 Tag 170 Müncheberg, Kr. Märkisch Oderland 300 Großer Arber (Arberhütte) 34 Stunden 777 Stein, Kr. Rosenheim 1 Monat Juli 1954 3661 Purtschellerhaus, Kr. Berchtesgadener Land 12 Monate 12/ /1944 in der Prignitz (ca. 100 km²) 3 Tage 194 Einzugsgebiet des Mains (ca km²) Oktober 1998 Quelle: Deutscher Wetterdienst

39 Niederschlagsmesser Für die Aufzeichnung von Niederschlägen werden genormte Messeinrichtungen verwendet. In der Bundesrepublik ist vom Deutschen Wetterdienst (DWD) ein Regenmesser nach Hellmann mit einer Auffangfläche von 200 cm² standardisiert. Aufstellungshöhe: ,0 m über Geländeoberkante Ablesezeitraum: :30 MEZ Ablesegenauigkeit: ,1 mm In der Bundesrepublik sind noch ca derartige Niederschlagsstationen im Betrieb.

40 Niederschlagsschreiber I
Niederschlagsschreiber [Ombrometer] Bei Regenschreibern wird der Niederschlag in einem Gefäß aufgefangen, in dem sich ein Schwimmer befindet. Der Schwimmer ist mit einem Schreibarm verbunden, dessen Bewegung auf Registrierpapier protokolliert wird.

41 Niederschlagsschreiber II
Das Registrierpapier liegt auf einer Schreibtrommel auf, die einen zeitgesteuerten Vorschub hat. Das Schwimmergefäß fasst exakt 10 mm und wird durch eine Heberkonstruktion entleert. Dadurch entstehen die charakteristischen Sägezahnlinien.

42 Niederschlagsschreiber III
Bei den Messsystemen mit Kippwagenprinzip wird der Niederschlag über ein Einlaufsieb auf eine Wippe geleitet. Die Wippe hat ein definiertes Auffangvolumen und gibt beim Kippen je 0,1 mm einen Impuls ab. Der Impuls dient zum Anstossen einer Analogwertänderung und kann gleichzeitig als Spannungswert weitergeleitet werden. Bildquelle: Thies Clima Für die Registrierung von Nieder- schlagsereignissen (Beginn- und Endzeitpunkte) werden Nieder-schlagswächter eingesetzt. Gemessen wird der Durchgang des Niederschlages durch eine Lichtschranke. Bildquelle: Thies Clima

43 Niederschlagsmessung
Messfehler bei Niederschlagsmessern Grundsätzlich ist zu beachten, dass die Angaben der Tages-niederschläge von Niederschlagsmessern fehlerbehaftet sind. Mögliche Fehlerquellen sind dabei: Einfluss der Verdunstung Einfluss der Windexposition Benetzungsverluste Die Fehlereinflüsse können dazu führen, dass Korrekturen der gemessenen Niederschläge in einer Größenordnung von % (bezogen auf den Jahresniederschlag) vorgenommen werden müssen.

44 Online Niederschlagsdaten
Bildquelle: LUA NRW

45 Klimadaten – Vergleich langjähriger Niederschlagswerte


Herunterladen ppt "Vorlesung Wasserwirtschaft & Hydrologie I"

Ähnliche Präsentationen


Google-Anzeigen