Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Mitzi Eberlin Geändert vor über 11 Jahren
1
1. Statische elektrische und magnetische Felder
1.1. Elektrische Ladungen und elektrische Felder Elektrische Ladung Beobachtung (Griechenland, Altertum): Bernstein (gr. „elektron“) zieht nach Reibung Stroh und Federn an Moderne Erklärung: Elementarteilchen haben Masse m Gravitationsfeld (elektrische) Ladung Q Elektrisches Feld (und bei Bewegung magnetisches Feld) Farbladung (R,G,B) Starkes Feld (Kernkräfte) schwache Hyperladung Y schwache Isospinladung I3 Schwaches Feld (Radioaktivität)
2
Empirische Tatsachen:
Quantisierung: Millikan-Versuch (1907): statisch geladene Öltröpfchen im E-Feld „Elementarladung“ Elektron e Q(e) e Positron e Q(e) e Proton p Q(p) e Teilchen / Antiteilchen m(e) m(e) Ungelöstes Rätsel: Quarks: stets gebundene Bausteine der Hadronen (Proton, ...)
3
Elektrisches Feld e e Ladungserhaltung: Abgeschlossenes System
Beispiel: Konversion von Gamma-Quanten e e Atomkern Ladung Z·e
4
Richtung elektrischer Kräfte zwischen Ladungen:
Ungelöstes Rätsel: Für Elementarteilchen gilt Mögliche Erklärung (Elementarteilchenphysik, Superstrings): Der Raum hat (bei kleinen Abständen) mehr als 3 Dimensionen
5
Messung von |Q|: Elektrometer
Laborinstrument Schulinstrument geladenes Teilchen (ionisierend) Wir sehen hier die Funktionweise eines Elektroskops. Links ein Laborgerät mit einer dünnen Goldfolie, an beiden Enden an einer Elektrode aufgehängt. Wird Ladung aufgebracht, stoßen sich die gegenüberliegenden Goldflächen ab und die Folie spannt sich zu einem Bogen. Dies beobachtet man, hier von rechts, durch ein Mikroskop. Von links wird die Folie dazu von Licht, das mit einem Kondensor gesammelt wird, beleuchtet. Im rechten Bild sieht man den Aufbau eines Demonstrationsinstrumentes für die Schule. Hier dreht sich aufgrund der abstoßenden Kräfte zwischen gleichartigen Ladungen eine Metallwippe zur Seite. Aus dem Ausschlag kann man sogar im Prinzip die gesamte aufgebrachte Ladung ablesen, weshalb Elektroskope auch oft „Elektrometer“ genannt werden.
6
1.1.2. Das Coulomb-Gesetz Q1 Q2 Punktladungen
Beliebige Systeme von Punktladungen: Gesamtkraft durch Vektoraddition Für elektrische (Kraft-)Felder gilt das Superpositionsprinzip
7
Einheiten im cgs-System:
Q1 Q2 Punktladungen 1 esu 1 electrostatic unit 1 esu übt in 1 cm Abstand die Kraft 1 dyn auf 1 esu aus Elegant: Elektrodynamik-Rechnungen mit k = 1 Kompliziert: Umrechnung in mechanische Größen
8
Einheiten im SI: Q1 Q2 Punktladungen
Mechanische Definition der Stromstärke: 1 A = 1 Ampere = diejenige Stromstärke in zwei unendlich langen parallelen geraden Leitern in 1 m Abstand, die pro m Leiterlänge eine Kraft von 2·10-7 N verursacht. durch einen Drahtquerschnitt fließt pro s die Ladung 1 C Messung: k = 8,9875·109 N m2 C-2 Definition: Dielektrizitätskonstante Umrechnung: (riesige Ladung)
9
1.1.3. Das elektrische Feld q Coulomb-Gesetz: Q Probeladung
Quellladung Q Elektrisches Feld (Eigenschaft der Quellladung Q) Superpositionsprinzip: Kontinuumsübergang: heißt Ladungsdichte
10
elektrischer Fluss durch A
z y Gaußscher Satz (vgl. Theorie-VL) O x Ladungen sind die Quellen ( ρ 0 ) bzw. Senken ( ρ 0 ) des elektrischen Feldes Gaußscher Satz (vgl. Theorie-VL) Oberfläche A Umschlossene Ladung Q Gaußsches Gesetz elektrischer Fluss durch A
11
Es existiert ein elektrisches Potential
Folgerung: Das elektrische Feld einer Ladungsverteilung ist als Superposition von Zentralfeldern wirbelfrei. Es existiert ein elektrisches Potential beliebig; oft r0 Poisson-Gleichung
12
Definition: Die Potentialdifferenz zwischen zwei Punkten heißt elektrische Spannung
1 2 U12 Bewegung einer Testladung q durch U12: Einheiten:
13
Äquipotentialflächen
Beispiel 1: Feld des elektrischen Monopols Radialfeld • Äquipotentialflächen Q Beispiel 2: Feld des elektrischen Dipols • Q Q Elektrisches Dipolmoment: r : Dipol Monopol der Ladung Q Q 0
14
Beispiel 3: Feld zweier gleicher Ladungen
r : Monopol der Ladung 2Q Q Beispiel 4: Feld eines elektrischen Quadrupols
15
Beispiel 5: Homogenes Feld
Flächenladung: z Plattenkondensator
16
1.1.4. Punktladungen und Dipole im elektrischen Feld
q vx x z m a) Homogenes Feld, Ablenkung: Parabel
17
b) Homogenes Feld, Beschleunigung: U e me e me
Einheit „Elektronenvolt“: Glühkathode
18
Ladungsemission an Spitzen in metallischen Oberflächen
c) Zentralfeld, Spitzeneffekt: Spitze Radius r Ladungsemission an Spitzen in metallischen Oberflächen
19
d) Dipol im homogenen Feld: Dipolmoment: Dipolmoment:
Drehschwingung des Dipols um Richtung des E-Feldes Dämpfung Ausrichtung des Dipolmoments in E-Richtung Molekulare Dipole mit Drehimpuls Präzession von um
20
Q e) Ausgerichteter Dipol im inhomogenen Feld: O H Quellladung
Probedipol Q zeigt auf Q, d.h. in Richtung des größten E-Feldes O H Wasser-Molekül Allgemein: Experiment: Ablenkung eines Wasserstrahls
21
1.2. Elektrische Leiter im elektrischen Feld
Definition: Ein Medium heißt elektrischer Leiter, wenn Ladungsträger frei (ohne Kraftaufwand) verschiebbar sind. Beispiele: Supraleiter, Metalle (annähernd), astrophysik. Plasmen (annähernd) Folgerung: In statischer Situation verschwindet im Innern eines elektrischen Leiters überall das elektrische Feld. Beweis: Wäre irgendwo , würde auf die dort lokalisierten freien Ladungsträger q die Kraft wirken Ladungsverschiebung Widerspruch zur Annahme einer statischen Situation.
22
Ladungs-Verschiebung
Influenz Externes Feld Ladungs-Verschiebung Gegenfeld im Leiter Beispiele: - -
23
. Folgerungen: im Inneren Ladung nur auf Leiteroberfläche
statische Situation Oberfläche Oberfläche Äquipotentialfläche . - q Leiter In zusammenhängenden Leitern gilt
24
geschlossene Leiterwand
Vakuum 0 Faraday-Käfig: Potential im Innenraum: Randbedingung (Innenwand): Lösung: Folgerung: d Netzkäfige, Lochdimension d: Durchgriffslänge des E-Feldes ist O(d) Grund: d ist einzige Längenskala des Problems
25
Metallplatten mit isolierten Griffen
Experiment zur Influenz: - Ungeladene Metallplatten in Berührung ins Feld schieben Metallplatten trennen und herausziehen Platte 1 Elektrometer Ausschlag Platte 2 Elektrometer Ausschlag Metallplatten mit isolierten Griffen
26
Spiegelladung mit Spiegelfeld
Experiment: Feldliniengerät Spiegelladung mit Spiegelfeld Metallring Metallplatte
27
- - - - - Experiment: Becher-Elektrometer c) b) a)
Ladung außen auflöffeln: max Löffel Ladung innen auflöffeln: max Probeladung in den Innenraum halten: Ladungsmessung per Influenz (ohne Umladung)
28
UKugel (im Prinzip unbegrenzt)
Van-de-Graaf Generator: (Kombination von Spitzeneffekt und Faradaykäfig) Leiterkamm U 10 kV Erde U 0 V Isolatorband Metallkugel - UKugel (im Prinzip unbegrenzt)
29
1.2.2. Ladung auf metallischen Oberflächen
Influenz Allgemeiner Fall lokale Flächenladung Gesamtladung lokale Flächenladung Gesamtladung Generell gilt aber: h 0 dA Leiter . Oberflächenfeld:
30
σ Beispiel: Die geladene Kugelschale Potential:
R σ Das Feld außerhalb der geladenen Kugel ist identisch mit dem der entsprechenden Punktladung im Zentrum der Kugel Potential: ( Nullpunkt: 0 bei Q 0 ) Definition: heißt Kapazität bzw. Ladungsfassungvermögen der Oberfläche.
31
( gebräuchlich: pF, nF, F )
2 1 2 1 Q2 Q1 U Kondensatoren Zwei Leiterflächen: 1 2 Kondensator: Influenz - Q Aufladung Q Kapazität: 2 1 Einheit: ( gebräuchlich: pF, nF, F ) 2 0 1 = U Spannungsquelle - U Erde Schaltzeichen:
32
Beispiel: Plattenkondensator
+Q Q 1 2 x d A in Praxis: A d2 U 1 2 Symmetrie homogen
33
komplizierte Randeffekte
Beispiel: Realer (endlicher) Plattenkondensator U homogener Bereich komplizierte Randeffekte U + U Korrektur von Randeffekten: U Korrekturring Aufsicht
34
Beispiel: Kugelkondensator
+Q Q i a U i a 2 ri 2 ra
35
Parallelschaltung: C1 C2 C3 Q1 Q2 Q3 0V U
36
Serienschaltung: U1 C1 C2 C3 U 0V Q Q U2 U3
37
... Verallgemeinerung: Kirchhoffsche Regeln Maschenregel Knotenregel
Cn U3 U2 U0 Q Freier Knoten: C1 C2 C3 Cn Un U3 U2 U1
38
1.2.4. Energie des geladenen Kondensators
2 0 1 = U Q Q dQ Plattenkondensator: gilt auch allgemein Energiedichte:
39
Messung: Spannungswaage
d Q Q U 0 A
40
1.3. Dielektrika Problem: Statische elektrische Felder in Materie polare Dielektrika: z.B. Wasser permanente molekulare Dipole Ausrichtung starkes Gegenfeld nicht-polare Dielektrika: induzierte molekulare Dipole: „Polarisation” ⊕ Atomkerne ⊝ Elektronenwolke der Atomhüllen Polarisation Gegenfeld, oft E
41
Polarisationsladung: Qpol
Molekülpolarisation: molekulares Dipolmoment Polarisationsdichte: (vgl. Theorie-VL) Überschussladung: Q Polarisationsladung: Qpol V Def.: Dielektrische Verschiebung (Materialgleichung) Folgerung: (Feldgleichung)
42
Beispiel: Abstoßung von Gasblasen in Öl
Abstoßung Gasblase
43
Folgerung: Stetigkeitsbedingungen an Grenzschichten
(nur für ungeladene Schichten) (nur für Elektrostatik) Medium 1 Medium 2 V A Medium 1 Medium 2 A L (gilt auch in der Elektrodynamik)
44
(molekulare) Polarisierbarkeit
Lineare Näherung: (molekulare) Polarisierbarkeit dielektrische Suszeptibiliät relative Dielektrizitätskonstante: isotropes Medium Zahl (Skalar) anisotropes Medium Tensor (2. Stufe) Faustregel: Für homogene isotrope Medien ersetze in allen Formeln für das Vakuum einfach 0 durch 0.
45
(Isolator, große Polarisierbarkeit)
Beispiel: Kondensator mit Dielektrikum z d A Feldenergie: (gilt auch allgemein) Dielektrikum (Isolator, große Polarisierbarkeit)
46
h d U Kraft auf ein Dielektrikum: V(h) fl
Steigen der Flüssigkeitssäule Feld: Batterie: mech. Arbeit:
47
1.4. Elektrischer Strom 1.4.1. Stromstärke A dA Bewegung
Elektrischer Strom Ladungstransport Ladung dQ Bewegung während dt Stromstärke (bzgl. dA): Stromdichte: Stromstärke bzgl. A: A Kontinuitätsgleichung:
48
Leitungsmechanismen:
Elektronische Leiter: Metalle, Halbleiter Ladungsträger hauptsächlich Elektronen Ionen-Leiter: Elektrolyte, Isolatoren mit Fehlstellen Ladungsträger hauptsächlich positive und negative Ionen Gemischte Leiter: Plasmen Ladungsträger: Elektronen und Ionenrümpfe; z.B. in Gasentladungen Mikroskopische Theorie: n: Anzahldichte positiver (negativer) Elementarladungen zugehörige Transportgeschwindigkeiten
49
1.4.2. Ohmsches Gesetz Betrachte elektronische Leiter (Metalle)
Stöße an Atomen des Festkörpers ungeordnete Bewegung Bahn eines Leitungselektrons typische instantane Geschwindigkeit (T-abhängig): mittlere freie Weglänge ( zwischen zwei Stößen ): mittlere Zeit zwischen zwei Stößen: Beispiel: Kupferdraht bei Zimmertemperatur
50
Def.: Driftgeschwindigkeit Ladungstransport
Bahn eines Leitungselektrons Stöße völlige Randomisierung der Bewegungsrichtung Bsp.: Cu-Draht, E 100 V/m Def.: Driftgeschwindigkeit Ladungstransport Ohmsches Gesetz elektrische Leitfähigkeit Beweglichigkeit el , stark T-abhängig, oft unabhängig von E
51
Spezialfall: homogener Leiter, konstanter Querschnitt
über Querschnitt homogen A L Ohmsches Gesetz elektrischer Widerstand spezifischer Widerstand (Materialparameter) Allgemeine Def.: Schaltzeichen R
52
Folge statischer Situationen
Beispiel: quasistatisches Auf-/Entladen eines Kondensators Folge statischer Situationen R I U0 Q UC schließt bei t 0 I UR C UC Bemerkung: t I U0/R Lösung:
53
Kondensatorspannung:
C schließt bei t 0 I Q UR UC t I U0/R Kondensatorspannung: t UC U0
54
R Q U 1 2 1 2 1.4.3. Stromleistung und Joulsche Wärme
Arbeit des E-Feldes: Elektrische Leistung: U = const. Einheiten: Ohmsches Gesetz
55
Knotenregel: Knoten punktförmige Leiterverbindung
Kirchhoffsche Regeln Analyse von Netzwerken von Leitern, (allgemeinen) Widerständen, Spannungs- / Stromquellen, … Knotenregel: Knoten punktförmige Leiterverbindung V I1 I2 I3 I4 I5 auslaufend: I 0 einlaufend: I 0
56
Induktivität (z.B. Spule)
Maschenregel: Masche Schleife in der Schaltung I1 I1 I2 Q2 R1 I5 C I3 Induktivität (z.B. Spule) L R2 I4 I3
57
Anwendung (1): Reihenschaltung ohmscher Widerstände
Rn I U0 Maschenregel:
58
Anwendung (2): Parallelschaltung ohmscher Widerstände
Rn I1 I2 In U0 Knotenregel:
59
Anwendung (3): Spannungsteiler
I d x U(x) U(x) x d U0 Potentiometer
60
Anwendung (4): Wheatstonesche Brückenschaltung
d x U1 U2 R1 Rx A I Nullabgleich:
61
(analog: Dreheisengerät)
Messgeräte „Amperemeter” Wärmewirkung: Hitzdraht-Amperemeter I l Erhitzung l l Magnetische Wirkung: Galvanometer N S Permanentmagnet Zeiger I Drehbare Spule Drehspulgerät: (analog: Dreheisengerät)
62
elektrostatisches Voltmeter ( Innenwiderstand )
Elektrolytische Wirkung: I Menge des pro Zeiteinheit elektrolytisch zersetzten Stoffes (s.u.) Spannungsmessung: Voltmeter V R I elektrostatisches Voltmeter ( Innenwiderstand )
63
Innenwiderstand des Amperemeters:
real A ideal Ri Innenwiderstand verfälscht den Schaltkreis! Ausweg: Indirekte Strommessung durch Voltmeter mit Messverstärker V Re 0 I externer Messwiderstand Messverstärker ( 1016 A messbar )
64
Indirekte Spannungsmessung mit Amperemetern:
Rp I Ip U Spannung ohne Messgerät: gesucht Spannung mit Messgerät: gemessen
65
1.4.6. Elektrolytische Leitung von Strom
Elektrolyt: Flüssigkeit mit frei beweglichen Ionen (geladene Moleküle) z.B. Salzlösungen, Säuren, Laugen Bildung eines Elektrolyts: O H Wasser-Molekül Molekül mit Ionenbindung Dissoziation ( Aufspaltung in Wasser da energetisch günstiger ) U0 Elektrolyt Kathode (Minuspol) Anode (Pluspol) Anion Kation
66
Spezialfall: Dissoziation von Wasser
U0 Elektrolyt Kathode (Minuspol) Anode (Pluspol) Neutralisierung der Ionen an Elektroden Ablagerungen auf Elektroden Aufsteigen von Gasbläschen an Elektroden Auflösen von Elektroden Spezialfall: Dissoziation von Wasser (geringe) Leitfähigkeit von Wasser Erhöhung der Leitfähigkeit durch Zugabe von Salz etc.
67
Knallgaserzeugung mit Kochsalzlösung:
Dissoziation von Kochsalz: Na Cl Na+ Cl Kathode: 2 Na 2 H2O 2 e 2 Na OH H2 Anode: 4 Cl 2 H2O 4 H Cl O2 4 e 2 H2-Moleküle 1 O2-Molekül Knallgas Knallgaserzeugung mit verdünnter Schwefelsäure: Dissoziation Schwefelsäure: H2 SO4 2 H+ SO42 Kathode: 2 H 2 e H2 Anode: SO42 H2O H2 SO4 ½ O2 2 e 2 H2-Moleküle pro O2-Molekül Knallgas
68
Kupferbeschichtung ( Rostschutz ):
Dissoziation Kupfersulfat: Cu SO4 Cu2+ SO42 Kathode (z.B. Nickel): Cu2+ 2 e Cu (galvanische Beschichtung) Anode: SO42 SO4 2 e a) Kohlestab 2 H2O SO4 H2 SO4 O2 b) Kupfer (Opferelektrode) Cu SO4 Cu SO4 (Auflösung) Bleibaum: Dissoziation Bleiacetat: Pb ( CH3COO )23H2O Pb2 CH3COO Bleikathode: Pb – Ablagerung (Bleibaum) Bleianode (Opferanode): Pb 2 CH3COO Pb ( CH3COO )2 2 e
69
Leitfähigkeit und Ionenkonzentration:
el n A B A: Ladungsträgerdichte steigt B: Beweglichkeit nimmt ab (Anziehung von Kationen und Anionen) Def.: Faraday-Konstante Folgerung: 1 Mol eines Ions mit Ladg. Z·e transportiert die Ladg. Z·F Messungen: Elektrochemisches Äquivalent: Ladungszahl Z und Faraday-Konstante: Elementarladung:
70
kosmisches Myon ( Primärionisation)
Strom in Gasen Gasionisation gemischte e, Ion-Leitung ( Plasma ) Mechanismen: thermische Ionisation ionisierende Strahlung ( e, e, , , … ) Stoßionisation Gas kosmisches Myon ( Primärionisation) Ladungsdrift: Gas Ion
71
Kennlinie der Gasentladung: Allmähliche Stromerhöhung I
Anode Kathode Primär-Ionisation R U A: Linearer Bereich Ohmsches Gesetz Gleichgewicht Erzeugung / Rekomb. sehr kleine Abflussrate von e, Ionen n const., vD E U I B A US Sättigung B: Rekombinationsbereich U Abflussrate Rekomb. n Ladungsträgermangel
72
Kennlinie der Gasentladung: Allmähliche Stromerhöhung I
Anode Kathode Primär-Ionisation R U C: Sättigungsbereich fast alle Ladungsträger fließen ab keine Rekombination I const. U I D UZ Zünd UC kritisch C B A US Sättigung CD: Stoßionisation setzt ein, I D: Zündpunkt für selbständige Entladung Ekin (zwischen Stößen) EIonisation jede Ladung sorgt für eigenen Ersatz stark Druckabhängig
73
Kennlinie der Gasentladung: Allmähliche Stromerhöhung I
Anode Kathode Primär-Ionisation R U E: Glimmentladung ( bei sehr kleinem Druck ) Strom I , Widerstand R U I G F E D UZ Zünd UC kritisch C F: Raumladungseffekte werden wichtig Raumladung Abschirmung R B A US Sättigung G: Bogenentladung ( bei großem Druck ) großer Strom glühende Elektroden Glühemission von Elektronen
74
K A Struktur von Glimmentladungen: (stark druckabhängig)
Rekombination, Raumladung Kathodenfall Anodenfall K A Hittorfscher Dunkelraum Faradayscher Dunkelraum Ionen Stoßionisation „negatives Glimmlicht“ „positive Säule“ (manchmal strukturiert) anodisches Glimmlicht
75
1.4.8. Stromquellen Def.: Ri U Ra V EMK ElektroMotorische Kraft
U0 EMK V Ra Def.: EMK ElektroMotorische Kraft Messung von U(Ra) Messung von Ri und EMK Beispiele für Stromquellen: Elektrodynamische Generatoren: Strom Solarzellen ( Halbleiterphysik ) Galvanische Elemente: Lösung von Metall in Elektrolyt Elektrolyt Metall Ion e Elektrolyt Metall abschirmendes E-Feld Potentialdifferenz Diffusions- Gleichgewicht
76
Galvanisches Element (Prinzip):
poröse Wand U Metall1 Elektrolyt1 Elektrolyt2 Metall2 1 2 Referenzelektrode: H2-umspülte Platinelektrode in 1-normaler Säure 1 Mol H / l Spannungsreihe: Galvanische Spannung gegenüber Referenzelektrode (Metalle in 1-normalem Elektrolyt mit gleichem Metallion) 1 Mol Metallionen / l Edle Metalle: U 0 (Cu, Ag, Au,…) geben schwer Elektronen ab Unedle Metalle: U 0 (Fe,…) geben leicht e ab oxydationsfreudig
77
EE( Cu-Abscheidung ) E( Zn-Auflösung )
Daniell-Element: poröse Wand Cu Cu SO4 Zn SO4 Zn U 1 2 2e 2e H2SO4 / H2O Cu Zn SO42 Cu Zn EE( Cu-Abscheidung ) E( Zn-Auflösung ) Bemerkung: Cu SO4 als gemeinsames Elektrolyt möglich, aber Zn- Elektrode würde sich mit Kupfer überziehen!
78
Wiederaufladbare Stromquellen
Akkumulatoren: Wiederaufladbare Stromquellen H2SO4 / H2O Pb SO4 Schicht Pb Beispiel: Bleiakku Aufladen: Anode: Pb SO4 2 H2O Pb O2 H2SO4 2 H 2 e Kathode: Pb SO4 2 H 2 e Pb H2SO4 Anode Pb O2 ; Kathode Pb Entladen: Anode: Pb O2 SO42 4 H 2 e Pb SO4 2 H2O Kathode: Pb SO42 Pb SO4 2 e Anode Pb SO4 ; Kathode Pb SO4 Analog: Trockenbatterie (Leclanché-Element)
79
Thermoelektrizität E Energieniveaus der Leitungselektronen
Energie freier Elektornen (ruhend) E WA Austrittsarbeit Metall-Oberfläche Vakuum Def.: Kontaktpotential U12 WA zwischen zwei sich berührenden Metallen 1, 2 stark Temperatur-abhängig
80
T1 T2 T1 T2 Thermoelement: Thermospannung Peltier-Effekt: Metall 1
V Uth Thermospannung Uth a·T a·( T2T1 ) Peltier-Effekt: Metall 1 Metall 2 Uext T1 T2 I
81
1.5. Magnetismus 1.5.1. Permanentmagnete
Altertum: Fund magnetischer Steine bei Magnesia (Kleinasien) Heute: Magnetfelder elektrische Ströme magnetische Materialien mikroskopische Kreisströme und Spins Empirische Befunde: Es gibt zwei magnetische Pole: N ( Nord ) S ( Süd ) Anziehung Abstoßung Es wurden bisher keine magnetischen Monopole beobachtet Sägen Magnetfeldlinien sind stets geschlossen, d.h. sie enden nie
82
Empirisches magnetisches Kraftgesetz:
sehr lange Magnetstäbe quasi isolierte Magnetpole ... p1 p2 p1 , p2: „Polstärken“ Analogie zum Coulomb-Gesetz: Definition: Motivation später: Folge: Quantifizierung der Polstärke analog zur elektrischen Ladung
83
Feldkonzept (im Vakuum): p2 0 ist Probepol im Magnetfeld von p1
Definition: Magnetische Erregung Definition: Magnetische Feldstärke Einheiten der magnetischen Feldstärke: SI: cgs-System: Beispiele: Erdmagnetfeld (Oberfläche) 20 T NMR-Tomograph: 1 T Supraleitende Magnete (Beschleuniger): 10 T Neutronensterne (Oberfläche): 108 T
84
1.5.2. Magnetfelder stationärer Ströme
Beobachtung: Stationäre Ströme erzeugen Wirbelfelder Feldrichtung wechselt mit Stromrichtung B r 1 , B I Fläche A Rundweg C Quantitativ beschreibbar durch: Amperesches Gesetz mit Stokesscher Satz nicht konservativ! Das Magnetfeld hat kein skalares Potential!
85
Zusammenfassung: Beobachtung: es gibt keine magnetischen Monopole
das Magnetfeld ist quellenfrei magnetische Feldlinien sind geschlossen Theorie-VL wegen existiert ein Vektorpotential mit ist nicht eindeutig Eichbedingung Zusammenfassung:
86
Beispiele und experimentelle Tests:
Stromdurchflossener Leiter Symmetrie B r r0
87
Streufelder entweichen im Unendlichen
Zylinderspule: I0 real: endlich lang, endliche Wicklungsdichte Streufeld: L, N Windungen außen innen I0 ideal: unendlich lang und dicht gewickelt … Streufelder entweichen im Unendlichen mit Wicklungsdichte
88
Optimale Homogenität im Spulenzentrum
Praktische Realisierung des (fast) homogenen B-Feldes: B(z) (auf Achse) R R z z Helmholtz-Spule Optimale Homogenität im Spulenzentrum
89
Beliebige Leiterformen:
Windungszahl N Ringspule: Symmetrie I Beliebige Leiterformen: Biot-Savart-Gesetz
90
Magnetisches Dipolmoment
Stromschleife: Paradebeispiel für Biot-Savart-Gesetz z I R Dipolfeld mit Magnetisches Dipolmoment Bemerkung: Resultat gilt für beliebige Form der Fläche. Das magnetische Dipolmoment ist eine charakteristische Größe!
91
System ohne Magnetfeld
Die Lorentz-Kraft q Coulomb-Kraft Lorentz-Kraft Beweis: Empirische experimentelle Beobachtung Invarianz der Elektrodynamik unter Lorentztransformationen ( spezielle Relativitätstheorie ) Lorentz- Transf. System ohne Magnetfeld Laborsystem
92
Experimentelle Tests:
dL I Experimentelle Tests: Kraft auf stromdurchflossenen Leiter: vD Driftgeschwindigkeit der Ladungen q n Ladungen q pro Volumen a Leiterquerschnitt q pro s durch a Ladungen in dL
93
Spezialfall: Zwei parallele Drähte
1 2 r Spezialfall: Zwei parallele Drähte I1 durch Draht 1 Kraft auf Draht 2: Anziehung, falls I1 und I2 gleichsinnig Abstoßung, falls I1 und I2 gegensinnig Definition der Stromstärke 1 A
94
e Fadenstrahlrohr: R U Anode Glühkathode Glas-Kolben
dünnes Gas (Argon) Glühkathode Anode R U Messung von em Alternative Methoden zur e m-Messung: Kathodenstrahlröhre mit überlagerten E- und B-Feldern ( Grundlagenpraktikum )
95
Barlowsches Rad: Hg e Hg Achse Rad Achslager N S Rad Achse
Lorentzkraft auf Elektronen überträgt sich durch Reibung der Elektronen im Metall auf das Rad
96
Hall-Effekt: d V Hall-Spannung UH Fehlstellenleitung
Löcher in p-dotierten Halbleitern Elektronenleitung Metalle oder Halbleiter
97
V d Hall-Spannung UH Quantitativ für einen Ladungsträgertyp:
Magnetische Kraft pro Volumen: Elektrische Kraft pro Volumen: (durch Ladungsträgertrennung) Hall-Feldstärke
98
V d Hall-Spannung UH Metalle, n-Halbleiter: q e UH 0
p-Halbleiter: q e UH 0 n(Halbleiter) << n(Metalle) Halbleiter-Hallsonden sehr sensitiv (B-Feld-Messung bis 106 T) B groß, T klein, b klein quantisierte RH (Quanten-Hall-Effekt) (Nobelpreis v. Klitzing, 1985)
99
1.5.4. Magnetisierung Grundlagen q, m
Problem: Statische magnetische Felder in Materie atomarer magnetischer Dipol: q, m R Atomkern Bohrsches Atommodell: q e ; m me ; L l ħ , l 0,1,2,… Bohrsches Magneton
100
Magnetisierung: Ausrichtung atomarer
von außen induzierte Ströme permanent vorhanden: l 0, Spins ungepaarter Elektronen Magnetisierung: Ausrichtung atomarer (vgl. Theorie-VL) Magnetisierungsstromdichte: Freie Stromdichte: Def.: Magnetische Erregung (Materialgleichung) Folgerung: (Feldgleichung 1) Quellenfreiheit: (Feldgleichung 2)
101
Folgerung: Stetigkeitsbedingungen an Grenzschichten
(gilt immer) (nur für Magnetostatik und nur für stromfreie Schichten) Medium 1 Medium 2 V A Medium 1 Medium 2 A L (gilt auch in der Elektrodynamik)
102
magnetische Suszeptibiliät
Lineare Näherung: magnetische Suszeptibiliät relative Permeabilität: isotropes Medium Zahl (Skalar) anisotropes Medium Tensor (2. Stufe) Faustregel: Für homogene isotrope Medien ersetze in allen Formeln für das Vakuum einfach 0 durch 0.
103
… Beispiel: Spule mit Eisenkern Stoffklassen: Diamagnete: m 0
Streufelder entweichen im Unendlichen Wicklungsdichte n … Eisenkern, Stoffklassen: Diamagnete: m 0 Paramagnete: m 0 Ferromagnete: m 0 Kraftwirkung: N diamagnetisch para-/ferromagnetisch
104
eingetauchtes Volumen
Probe Skala r Messung von m: Faraday-Methode: 0 Gouy-Methode: eingetauchtes Volumen S N homogen m z z0 V a L
105
Diamagnetismus abgeschlossene Elektronenschalen l 0, kein Spin
keine permanenten atomaren magnetischen Dipolmomente Induzierte Dipole wirken abschwächend ( Lenzsche Regel ) Bemerkung: Supraleiter sind perfekte Diamagneten m 1 B ( Meißner-Ochsenfeld-Effekt ) q, me R Atomkern extern Abschätzung der Größenordnung: B Zentripetalkraft: R const. Magn. Moment: R 1Å B 1T q e l 0: Diamagnetismus, sehr kleiner Effekt l 0: patomar >> pm Para/Ferromagnetismus
106
Paramagnetismus Permanenete atomare magn. Momente : statistisch orientiert B 0: (extern) B 0: Boltzmann-Statistik der pm pro V
107
B M MS Sättigung MS N pm Beispiel: pm 1 B B 1 T T 20 °C M 810 MS winzig!
108
Ferromagnetismus Atome / Moleküle mit ungepaarten äußeren Elektronen Spin Quantenmechanische Austauschwechselwirkung der Elektronen permanente atomare magn. Momente : spontan kollektiv orientiert Bsp.: Eisen ( Fe ), Cobalt ( Co ), Nickel ( Ni ): 3 ungepaarte f-Elektronen Magn. Domänen ( Weißsche Bezirke ) spontan magnetisiert Kein äußeres Feld Zustände minimaler Energie haben Mtot 0 Kritische Temperatur ( Curie-Temperatur TC ) Ferromagnetismus falls T TC Phasenübergang Paramagnetismus falls T TC
109
M Äußeres B-Feld Wandern der Domänenwände, Ausweitung der Domänen
hörbares Barkhausen Rauschen ( Umklappen der pm ) Energieverbrauch (gewonnen aus potentieller Energie der pm im B-Feld) Magnetisierungsweg: Folge benachbarter lokaler Energieminima abhängig von Vorgeschichte Hysterese-Kurve Elektrodynamik Neukurve B M Koerzitivfeld Remanenz Wärme Hysterese-Fläche Beispiel: Erwärmung von Trafo-Blechen
110
Verschiebungsstrom ( Maxwellsche Ergänzung )
2. Elektrodynamik – Quasistatik 2.1. Erinnerung: Grundgleichungen Maxwellsche Feldgleichungen: Elektrostatik, falls Faradaysches Induktionsgesetz Magnetostatik, falls Verschiebungsstrom ( Maxwellsche Ergänzung ) Kontinuitätsgleichung: elektromagnetische Wellen Lorentz-Kovarianz für Kraftgleichung (Lorentz-Kraft):
111
2.2. Quasistatische Phänomene
Quasistationäre Näherung: Gesetze der Magnetostatik gelten unverändert Interpretation: c , d.h. in der Zeit, die Licht benötigt, um die Strom- und Ladungskonfiguration ( den elektrischen Schaltkreis ) zu durchqueren, ändern sich Ströme und Ladungsdichten nicht wesentlich. Frequenzen nicht zu groß ( Kupferleitung: ) Schaltkreiselemente bewegen sich in externen E/B-Feldern nichtrelativistisch, Die Gesetze der Statik gelten modifiziert weiter: Kirchhoffsche Knotenregel: Kirchhoffsche Maschenregel: Die Summe der Spannungen in einer Masche verschwindet, falls der magnetische Fluss durch die Masche konstant ist.
112
2.2.1. Faradaysches Induktionsgesetz
fiktiver geschlossener Weg reale Leiterschleife Theorie gilt auch für bewegliche Schleifen variabler Form Uind: induzierte Spannung gemessen in der Schleife M: magnetischer Fluss gemessen im Labor Induktionsgesetz Bemerkung: Uind ist wegabhängig keine Potentialdifferenz. Daher oft Bezeichnung: Uind EMK ( Elektro-Motorische Kraft )
113
S N Test 1: B-Feld: variabel Leiterschleife: fest
Uind Zahl der Spulenwicklungen Vorzeichen von Uind wechselt mit Bewegungsrichtung des Magneten Vorzeichen von Uind wechselt mit Magnetorientierung Effekt durch Eisenkern verstärkbar Magnet ersetzbar durch Spule mit variierendem Stromfluss
114
Test 2: B-Feld: konstant Leiterschleife: variable Form
Fläche a(t) Spezialfall: B homogen , Schleife eben, Orientierung fest Beispiel: Uind v x(t) d
115
Test 3: B-Feld: konstant Leiterschleife: variable Orientierung
Spezialfall: B homogen , Schleife eben Fläche a const t Beispiel: Uind Wechselspannungsgenerator ( Dynamo )
116
Induktionsgesetz Lenzsche Regel: Die Induktion wirkt ihrer Ursache stets entgegen ( Gegenspannungen, Gegenkräfte etc. ) Herleitung: im Einzelfall: Uind Iind Gegenfeld Bind generell: Uind Iind Energieverbrauch Ursache muss Arbeit verrichten Gegen-„Kraft“ Anwendungsbeispiel: Wirbelstrombremse
117
Spule: Länge l, Querschnitt a
Die Induktivität I N Wicklungen Wicklungsdichte nN l Spule: Länge l, Querschnitt a Betrachte beliebige Leiterschleife Beispiel: Spule Biot-Savart-Gesetz Definition: Selbstinduktionskoeffizient bzw. Induktivität L L ist ein reiner Parameter der ( festen ) Schleifengeometrie Maßeinheit: L V s A H Henry Schaltsymbol
118
Spule: Länge l, Querschnitt a
Beispiel: Zylinderspule I N Wicklungen Wicklungsdichte nN l Spule: Länge l, Querschnitt a Magnetostatik Spulen-Volumen Gesamt-Fläche Das Magnetfeld steigt proportional zur Wicklungsdichte Die Induktivität steigt mit dem Quadrat der Wicklungsdichte
119
Beispiel: quasistatischer Einschaltvorgang einer Induktivität
UR I ULUind schließt bei t 0 t I U0R Maschen sind B-Feld-frei (B-Feld ist eingesperrt in Induktivität) U0 UL t Lösung:
120
Vergleich: Kapazität Induktivität
UC U0 R C I Q UR t I U0/R UC U0 erst Stromfluss, Spannungsaufbau verzögert U0 R L I UR UC U0 UL t I U0R erst Spannung, Stromfluss verzögert
121
Energie des Magnetfeldes einer Induktivität:
Vergleich: Kapazität Induktivität Magnetische Energie in Induktivität L Elektrische Energie in Kapazität C Energiedichte des Magnetfeldes in einer Spule (mit Kern): gilt auch allgemein Vergleich: magnetische Energiedichte elektrische Energiedichte
122
nur abhängig von Schleifengeometrie
Gegenseitige Induktion Schleife 1 Schleife 2 Biot-Savart-Gesetz Fluss durch Schleife 2: Gegeninduktivität nur abhängig von Schleifengeometrie Bemerkung:
123
Harmonische Wechselspannung
Wechselstrom Harmonische Wechselspannung t U(t) U0 Periode T 1/ν Schaltsymbol: U0: Scheitelwert U( t ): Momentanwert T: Periode Frequenz Kreisfrequenz
124
Beispiel: Leistung im ohmschen Verbraucher I( t ) R U( t )
Mittlere Leistung für beliebige periodische Wechselspannung: Effektivspannung: Effektivstrom:
125
Spezialfall: harmonische Wechselspannung
126
Allgemeine Wechselspannung: U(t)
Periode T Periode T: Fundamentalkreisfrequenz: Fourierzerlegung: Ueff ist gleich der quadratischen Summe der Effektivspannungen der Fourierkomponenten
127
Allgemeine Wechselspannung: U(t)
Periode T: Fundamentalkreisfrequenz: U(t) t Periode T Fourierzerlegung: Folgerung: Für lineare Netzwerke ( Superpositionsprinzip anwendbar) reicht es aus, das Verhalten für harmonische Wechselströme/Wechselspannungen zu untersuchen.
128
Beispiel: Rechtecksignale einseitig U0 symmetrisch U0
Vergl. Ueff aus Fourierzerl.
129
Fouriertransformation:
Allgemeine, nicht-periodische Spannung: U(t) t (Einschaltvorgang, Testpulse etc.) Inverse Fouriertransformation: Harmonische Zerlegung: Bemerkung: U reell, aber Ũ komplex mit den Fourierkoeffizienten Fouriertransformation: Parsevalsche Formel:
130
Fouriertransformation:
Allgemeine, nicht-periodische Spannung: U(t) t (Einschaltvorgang, Testpulse etc.) mit den Fourierkoeffizienten Fouriertransformation: Inverse Fouriertransformation: Harmonische Zerlegung: Bemerkung: U reell, aber Ũ komplex Folgerung: Für lineare Netzwerke ( Superpositionsprinzip anwendbar) reicht es aus, das Verhalten für harmonische Wechselströme/Wechselspannungen zu untersuchen.
131
Beispiel: Rechteckpuls
Tiefpass (s.u.) Filterschaltung, die kleine Frequenzen überträgt und große Frequenzen dämpft. Charakteristische Größe: Abschneidefrequenz c
132
DGL 2.2.5. Wechselstromwiderstände Lineares Netzwerk
Lineare Netzwerke: Zeitverhalten lineare Differentialgleichungen Lineare Komponenten: Ohmsche Widerstände, Kondensatoren, ideale Spulen, Linearverstärker, … Nichtlineare Komponenten: Spulen mit Kernen nahe der Sättigungs- magnetisierung, nichtlineare Verstärker, Multiplizierer, Dioden, Glimmlampen, hochkonzentrierte Elektrolyte, … Lineares Netzwerk Ist F(t) eine komplexe Lösung der DGL für Ströme oder Spannungen, so auch Re F(t) und Im F(t).
133
Neues (eleganteres) Konzept: Komplexe Spannung/Strom
Im U0 t I0 physikalischer Anteil Definition: Komplexer Wechselstromwiderstand Nach Konstruktion Gesetze der Quasistatik (Kirchhoffsche Regeln, ) gelten weiter
134
UR U R I Beispiel: Ohmscher Widerstand
Z reell und unabhängig von Beispiel: Induktivität UL U L I U I Z imaginär und proportional zu Strom eilt Spannung um 90 nach
135
UC U C I Beispiel: Kapazität I U
Z imaginär und umgekehrt proportional zu Spannung eilt Strom um 90 nach
136
Beispiel: RLC-Serienschaltung
Konstruktion im Zeigerdiagramm: Re Z Im Z L Dieses Beispiel: Re Z R 0 Z R
137
Momentane Wechselstromleistung in Z:
Mittlere Wechselstromleistung in Z: Wirkleistung Wirkleistung Blindleistung Wirkleistung: Scheinleistung: Blindleistung: Komplexe Leistung: Z Scheinwiderstand, Re Z Wirkwiderstand, Im Z Blindwiderstand
138
2.2.6. Wichtige lineare Netzwerke
Ue Ua Wichtige lineare Netzwerke ( Passiver ) Hochpass ( erster Ordnung ): Spannungsteilerschaltung Übertragungsfunktion: Phasendrehung: 1 durchlässig für ≳ 90 1 45
139
R C Ue Ua Hochpass als Differenzierer: Voraussetzung: Ue t enthält nur Frequenzen viel kleiner als ( inverse ) Fouriertransformation: Differenziererschaltung für Amplitude der differenzierten Spannung
140
( Passiver ) Tiefpass ( erster Ordnung ):
C R Ue Ua ( Passiver ) Tiefpass ( erster Ordnung ): Spannungsteilerschaltung Übertragungsfunktion: Phasendrehung: 1 durchlässig für ≲ 90 1 45
141
C R Ue Ua Tiefpass als Integrierer: Voraussetzung: Ue t enthält nur Frequenzen viel größer als (inverse) Fouriertransformation: Integriererschaltung für 0 Amplitude der integrierten Spannung
142
Veranschaulichung der Rechnung
angenäherte Integrator-Wirkung
143
R C Ue Ua L (Passives) Bandfilter (erster Ordnung): Spannungsteilerschaltung Resonanzfrequenz: Bandbreite: Gütefaktor: 90 90 1 durchlässig für R
144
R C Ue Ua L (Passives) Bandsperrfilter (erster Ordnung): Spannungsteilerschaltung Resonanzfrequenz: Bandbreite: Gütefaktor: 90 90 1 undurchlässig für R
145
2.2.7. Der Transformator Motivation: I R Verbraucher U U
Leistung P U I I U U U Relativer Leistungsverlust in der Leitung: Umwandlung der Eingangsspannung auf Hochspannung Übertragung über Hochspannungsleitung Umwandlung der Ausgangsspg. auf Verbraucherspannung (z.B. 230 V)
146
mögliche Realisierung
Schaltbild mögliche Realisierung Gleicher Wicklungssinn von Primär- und Sekundärwicklung bezüglich Richtung des magnetisches Flusses Primär-Wicklung Sekundär-Wicklung Eisenjoch U1 U2 Entgegengesetzter Wicklungssinn von Primär- und Sekundärwicklung bezüglich Richtung des magnetisches Flusses U1 U2
147
Definition: Kopplungsstärke
Z L1 L2 L12 Bemerkung: Idealer Transformator keine Streufeld- etc. Verluste gesamter magnetischer Fluss durchsetzt beide Spulen k Induktionsgesetz Maschenregel Wechselstrom Tafelrechnung
148
U1 U2 I1 I2 Z L1 L2 L12 Phasendrehung:
149
U1 U2 I1 I2 Z L1 L2 L12 Spezialfall: Spulen gleichen Volumens Windungszahlen N1, N2 Idealer Transformator: k
150
U1 U2 I1 I2 Z L1 L2 L12 Spezialfall: Spulen gleichen Volumens Windungszahlen N1, N2 Unbelasteter Transformator: Z
151
U1 U2 I1 I2 Z L1 L2 L12 Spezialfall: Spulen gleichen Volumens Windungszahlen N1, N2 Kurzgeschlossener Transformator: Z0
152
U1 U2 I1 I2 Z L1 L2 L12 Transformator mit ohmscher Last: ZR
153
U1 U2 I1 I2 Z L1 L2 L12 Transformator mit induktiver Last: ZiL
154
U1 U2 I1 I2 Z L1 L2 L12 Transformator mit kapazitiver Last: Z(iC) U2 U1größer als im unbelasteten Fall falls k2 2 C L2 Resonanzfrequenz:
155
N S Anwendungen: e Transformation auf Hochspannung
Hochstromanwendung: N1 ≫ 1 , N2 Aluminium-Schmelzen Edelstahl-Gewinnung Punktschweißen Aufheizen von Werkstücken durch Wirbelströme Betatron-Beschleuniger z.B. Rinne mit Metallschmelze groß e- Beschleunigung e N S Primärspulen (Helmholtz-Typ) Elektronenstrahl als Sekundärstromschleife inhomogenes magnetisches Wechselfeld Strahlfokussierung
156
2.2.8. Hochfrequenzleitung: Der Skineffekt
Elektrischer Leiter ohmscher Widerstand und Induktivität: Z RiL induktive Effekte dominieren für R L (typisch ≳ O( MHz )) Stromschwächung Lenz Folgerung: Bei hohen Frequenzen können Ströme nur nahe der Leiter-Oberfläche fließen ( Skineffekt ). L Elektrischer Leiter
157
r j r el Quantitative Untersuchung ( Theorie)
Eindringtiefe des Stroms j r el L r L Ld Beispiel: Kupferleiter Hz dmm ,07
158
( effektives ) durchströmtes Volumen
Übergangsbereich Oberfläche ( effektives ) durchströmtes Volumen HF-Spannungen sind relativ ungefährlich Eisendrähte ( großes ) sind schlechte HF-Leiter Gute HF-Leitung bei großer Oberfläche ( Hohlrohre, Litzen, ... )
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.