Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Tiwaz Kellenberger Geändert vor über 11 Jahren
1
Bézier und NURBS Kurven & Flächen Vortrag von Stefan Endler 06.01.2005
Computergraphik Seminar WS 2004/05 Prof. Elmar Schömer
2
Historie Kurven Flächen
Inhalt Historie Kurven Flächen
3
Vortrag über Kurven und Flächen
Historie Römerzeitalter: Benutzung eines Templates um Schiffsrippen herzustellen 13. – 16. Jh.: Weiterentwicklung durch die Venezianer 1752: Erstes auftreten eines „splines“. Spline = Holzstück zum zeichnen von Kurven Vortrag über Kurven und Flächen
4
Vortrag über Kurven und Flächen
Historie Mathematik: 1959: Paul de Faget de Casteljau wird bei Citröen angestellt und beginnt seine Forschung. 1960: P. Bézier beginnt seine Forschung bei Peugeot C. de Boor angestellt bei General Motors entdeckt B-spline Kurven Generalisierung zu NURBS (NonUniform Rational B-splineS) Ausserdem natürlich de Casteljau Algo Parallele Arbeiten (Umformungsalgorithmen nötig) Vortrag über Kurven und Flächen
5
Vortrag über Kurven und Flächen
Historie 1971: Erste Konferenz in Paris mit u.a. P.Bézier 1974: Erste Schritte in CAGD (Computer Aided Geometric Design) von R.Barnhill und R.Riesenfeld an der Universität von Utah 1979: Erstes Buch von I.Faux und M.Pratt. „Computational Geometry for Design and Manufacture“ Vortrag über Kurven und Flächen
6
Vortrag über Kurven und Flächen
Nicht Rationale Bézier Kurven Rationale Bézier Kurven Eigenschaften von Kurven NURBS Vortrag über Kurven und Flächen
7
Nicht Rationale Bézier Kurven
Bernstein Polynome Definition De Casteljau Algorithmus Degree Elevation Vortrag über Kurven und Flächen
8
Vortrag über Kurven und Flächen
Bernstein Polynom Allgemeine Darstellung von Bernstein Polynomen: Rekursiv: Nicht negativ Summe = 1 Vortrag über Kurven und Flächen
9
Vortrag über Kurven und Flächen
Bézier Kurve Definition einer Bézier Kurve: bi sind hierbei die Punkte n gibt den Grad der Kurve an Punkte 2 oder 3 Dimensional Vortrag über Kurven und Flächen
10
Vortrag über Kurven und Flächen
Bézier Kurve Der de Casteljau Algorithmus: Gegeben sind die Kontrollpunkte Gesucht sind die Punkte der Kurve an der Stelle t. Formel: In jedem Schritt wird aus 2 Punkten, ein neuer definiert in Relation t : (1-t) Vortrag über Kurven und Flächen
11
Vortrag über Kurven und Flächen
Bézier Kurve Beispiel: Kurve mit Grad 4 Subdivision: Vortrag über Kurven und Flächen
12
Vortrag über Kurven und Flächen
Bézier Kurve Degree Elevation Technik zum Erhöhen des Grades einer Kurve Formel: wobei b-1 = bn+1 = 0 BezierKurve.exe Oft benötigt damit die Kurve besser handhabbar ist. Umgekehrter Fall ist schwierig und gibt oft nur Annäherungen (wird aber z.B. beim Wechsel in ein anderes CAD System benötigt). Vortrag über Kurven und Flächen
13
Rationale Bézier Kurve
Definition De Casteljau Weight Points Anwendungsbeispiel Vortrag über Kurven und Flächen
14
Rationale Bézier Kurve
Definition einer rationalen Bézier Kurve: wi ist das Gewicht für den bi-ten Punkt Sind alle wi = 1, so erhält man die bekannte nicht rationale Bézier Kurve Nenner ist eine Konstante (gewichtete Bernstein Polynome) Vortrag über Kurven und Flächen
15
Rationale Bézier Kurve
Der de Casteljau Algorithmus: Es gibt 2 Varianten des Algorithmus: Alle Punkte werden umgewandelt zu homogenen Koordinaten Formel: wobei 1. Variante ist ähnlich des vorher besprochenen de Casteljau Algorithmus Vortrag über Kurven und Flächen
16
Rationale Bézier Kurve
Weight Points ist eine Möglichkeit der Geometrischen Umsetzung von Gewichten Definition von Weigth Points: Umrechnung zu Gewichten: RationalBezierCurve.exe Konvexe Hülle nicht nur bei den normalen Punkten, sondern auch bei den beiden Endpunkten + den Weight Points Vortrag über Kurven und Flächen
17
Rationale Bézier Kurve
Anwendungsbeispiel Conics werden durch 3 Punkte und einem Gewicht repräsentiert w0 = w2 = 1 Es ergeben sich 3 Fälle von Kurven: w1 < 1 Ellipse w1 > 1 Hyperbel w1 = 1 Parabel w1 = cos(a) Gleichzeitig Beispiel für piecewise Bézier Curves Vortrag über Kurven und Flächen
18
Vortrag über Kurven und Flächen
Eigenschaften Endpoint interpolation: x(0) = b0 x(1) = bn Symmetrie: bo,…,bn und bn,…,b0 beschreiben die gleiche Kurve Konvexe Hülle Die Kurve liegt auf jeden Fall im Kontrollpolygon, welches die Punkte bi bilden. … Variation diminishing: Wenn eine Linie das Kontrollpolygon m Mal schneidet, so wird die Kurve höchstens m Mal geschnitten. Vortrag über Kurven und Flächen
19
Vortrag über Kurven und Flächen
NURBS Definition B-Spline Basic Function Vortrag über Kurven und Flächen
20
Vortrag über Kurven und Flächen
NURBS Definition einer NURBS Kurve m gibt den Grad der Kurve an di sind die „de Boor“ Punkte (i = 0,…,n) wi sind die Gewichte Knot Sequence: NURBS = Non Uniform Rational B-Splines Algorithmen zum darstellen sind z.B. der de Boor Algorithmus Vortrag über Kurven und Flächen
21
B-Spline Basic Function
Wichtige Funktion für die Darstellung von NURBS Rekursive Formel: wobei Vortrag über Kurven und Flächen
22
B-Spline Basic Function
Vortrag über Kurven und Flächen
23
Vortrag über Kurven und Flächen
Viereckige Bézier Flächen Dreieckige Bézier Flächen Vortrag über Kurven und Flächen
24
Viereckige Bézier Flächen
Hyperbolic Paraboloid Einfachste Form von Bézier Flächen dargestellt durch 4 Punkte Verallgemeinerung: oder umgeschrieben Vortrag über Kurven und Flächen
25
Viereckige Bézier Flächen
Vortrag über Kurven und Flächen
26
Dreieckige Bézier Flächen
Definition: Bivariate Bernstein Polynomials: Vortrag über Kurven und Flächen
27
Dreieckige Bézier Flächen
Vortrag über Kurven und Flächen
28
Vielen Dank für ihre Aufmerksamkeit
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.