Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Judith Sternberg Geändert vor über 9 Jahren
1
Chemie für Medizinstudierende Teil Allgemeine und Anorg. Chemie Prof. Peter Burger Tel.:42838 3662 burger@chemie.uni-hamburg.de Basierend auf Skript: Prof. Berke, Univ. Zürich; Teile: Prof Gasteiger, Univ. Erlangen
2
Zeeck: Chemie für Mediziner, 5. Auflage32,95 € Wawra: Chemie verstehen/berechnen je 19,90 € Mortimer: Chemie, 6. Auflage59,95 € Schmuck, Chemie für Mediziner (neu!) 49,95 € Margaretha: Chemie für Mediziner (mehr für Organik 9.95 €) s. auch Skript etc.: Uni Erlangen (Prof. Gasteiger) http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/ Literatur
3
http ://www2. chemie.uni-erlangen.de/education/medprak/vorlesung/Folien/
4
Termine: Klausur: Freitag, den 6.2.09, 8.00 Uhr Nachklausur: Mittwoch, den 25.3.09, 14.00 Uhr Erfolgsquote: 55-80%
5
FAQ & Ankündigungen www.chemie.uni-hamburg.de/ studium/praktika/medizin/index.html www.chemie.uni-hamburg.de/studium/praktika/medizin/index.html
6
Goldene Regeln !!nur blöde Antworten!! Trauen Sie sich!! Es gibt keine blöden Fragen!
7
Ausnahme: Ist dies Klausur-relevant? Alles ist K -relevant, es sei denn, es gibt eine spezielle Ankündigung! Goldene Regeln
8
Chemie Additional Service http://www.chemie.uni-hamburg.de/studium/materialien /alg_chem_medi/video/index.html material / nitrogen oder 4 DVDs
9
Warum Chemie? Warum Ich?
10
Nierensteine & Chemie Niere Nierenfunktion Blutwäsche Dialyse Osmose/Diffusion sorgt für Konzentrationsausgleich Beginn Ende
11
Nierensteine & Chemie Niere Nierenfunktion Blutwäsche Dialyse Osmose/Diffusion Niere: semipermeable (halbdurchlässige) Membran HarnBlut s. M e m b r a n Erythrozyt (Häm) Ausscheidungen Ausscheidung (via Harn) von: - stickstoffhaltigen organischen Verbindungen - anorganischen Salzen - Giften & Abbauprodukten z.B. von Medikamenten
12
Nierensteine & Chemie Nierenfunktion Blutwäsche Dialyse Osmose/Diffusion Niere: semipermeable (halbdurchlässige) Membran HarnBlut s. M e m b r a n Erythrozyt (Häm) Ausscheidungen
13
Ortung des Steines Nierensteine & Chemie
14
Kationen positive Ionen Anionen negative Ionen anorganische Salze Phosphat SulfatMesomere Na +, K + (viel) Ca 2+, Mg 2+, NH 4 + (wenig) Cl – (Chlorid, viel) PO 4 3– (Phosphat, wenig) SO 4 2– (Sulfat, wenig) Harn 1,5 L/täglich Harnstoff Rest Organische Verbindungen 20 g Harnstoff 2 g Aminosäuren 1,2 g Kreatinin 0,5 g Harnsäure 0,5 g Zitronensäure 0,5 g reduzierende Verbdg. z.B. Vitamin C 0,07 g Glucose... 0,06 g Proteine ca. 25 g anorganische Salze Summe 24 h: ca. 50 g
15
Nierensteine & Chemie Kationen positive Ionen Anionen negative Ionen anorganische Salze Sulfat Na +, K + (viel) Ca 2+, Mg 2+, NH 4 + (wenig) Cl – (Chlorid, viel) SO 4 2– (Sulfat, wenig) PO 4 3– (Phosphat, wenig) Harn 1,5 L/täglich Calcium 2+ Bedeutung für Nierensteine Mesomere Phosphat Bestandteil von „anorg.“ Nierensteinen
16
Nierensteine & Chemie anorganische Salze Harn 1,5 L/täglich Harnstoff außer Dimer von Cystein gut wasserlöslich! keine Nierensteine Rest 20 Aminosäuren sehr gut wasserlöslich: 590 g/L bei 20°C keine Nierensteine
17
Nierensteine & Chemie Harn 1,5 L/täglich Harnstoff Rest Zitronensäure als Citrat Komplexbildner für Ca 2+ Ionen Nierensteine O _ _ _ Citrat anorganische Salze Calciumcitrat Komplex anorganische Salze Ca O O O O O O Oktaeder Niere Ausscheidung kleiner Mengen Citrat Calcium-Citrat-Komplexe wasserlöslich reduziert freie Ca 2+ Konzentration verhindert i.d.R. Nierensteine für Prophylaxe mindestens 300 mg
18
Nierensteine & Chemie anorganische Salze Harnstoff Rest Harn 1,5 L/täglich DNA aus Nahrung 2 H-Brücken 3 H-Brücken komplementäre Basenpaare ++ -- Protonendonator H-Brückenbindung Protonenakzeptor
19
Nierensteine & Chemie anorganische Salze Harnstoff Rest Harn 1,5 L/täglich Guanin analoger Abbau zu Harnsäure Purine Harnsäure und deren Salze in Wasser schwer löslich Nierensteine
20
Physiologische Bedingungen und bei normaler Ernährung Harn pH: 5,0 - 6,4 pH = -log [H 3 O + ] Nierensteine & Chemie schwach saurer
21
Oxalat-Stein hell: Weddellit dunkel: Whewellit Phosphat-Stein (Struvit) Ausgußstein Whewellit,Weddellit, Apatit Harnsäure-SteinXanthin-Steine Cystin-Stein Nierensteine & Chemie Größe: Sandkorn bis mehrere cm (!) ca. 70% der Steine
22
Nierensteine & Chemie Ionische Bindung: Ca 2+ und C 2 O 4 2- Ionen Ionengitter: geordnete 3D-Anordnung der Ionen Ca
23
Nierensteine & Chemie Löslichkeitsprodukt, Lp : Lp=[Ca(aq) 2+ ] 3 ·[ PO 4 3- (aq) ] 2 =10 -25 mol 5 /L 5 Ausfällung Ca 2+ Na 2 C 2 O 4 CaC 2 O 4 Calciumoxalat schwerlöslich Natriummoxalat gut löslich
24
Nierensteine & Chemie Löslichkeitsprodukt, Lp : Lp=[Ca(aq) 2+ ] 3 ·[ PO 4 3- (aq) ] 2 =10 -25 mol 5 /L 5 z.B.: Auflösen von Apatit: Ca 3 (PO 4 ) 2 Ca 3 (PO 4 ) 2 3 Ca(aq) 2+ + 2 PO 4 3- (aq)
25
Gichttophi an der Ohrmuschel Ursache : erhöhter Harnsäurespiegel Harnsäurekristalle Maßnahmen: Reduktion der Purin-Zufuhr purinreich: Innereien, auch Fleisch, Fisch, Meeres- und Hülsenfrüchte Begünstigt: Übergewicht und gesteigerter Alkoholkonsum. Nierensteine & Chemie Gicht & Symptome Viel trinken! Auspülung der Harnsäure Urolitholyse: Auflösen der Steine mit Base: pH >= 7
26
Krankheitsbild Hyperoxalurie: Calciumoxalatsteine meist Folge der Ernährung Nierensteine & Chemie Zertrümmern (Ultraschall)
27
Nierensteine & Chemie Phosphat-haltige Steine Phosphat PO 4 3– + 2 H + HPO 4 2– + H + H 2 PO 4 – Auflösen Ansäuern Ursache häufig Infektion Überführen in konjug. Säure HPO 4 2- (besser löslich) Säure/Base-Gleichgewichte konjugierte Säure konjugierte Base
28
Nierensteine & Chemie Physik seit 1980: früher in Wasser (Badewanne) Prinzip: akkustische Stoßwellen (Ultraschall) Initialzündung: (eher zufällig) aus Luft- und Raumfahrtforschung
29
Nierensteine & Chemie Vorbeugung Viel trinken! Erniedrigung der Ca 2+ Konzentration Trinken: „Erhöhung des Volumens = Verdünnung“ Konzentration, c: c = molare Menge/Volumen Nahrung: Purin- und Oxalat-arme Nahrung
30
mehr Info: http://www.medchem.axel-schunk.de/
31
mehr oder weniger stark säurebildende Lebensmittel: Fleisch, Fisch, Käse, Wurst, Eier zuckerhaltige Lebensmittel Getreide Alkohol Kaffee Limonaden und Colagetränke mit hohem Zuckergehalt Schwarztee, Grün-, Pu-Erh- und Matetee
32
FlüssigkeitpH-Wert Magensäure1-3 Zitronensaft2,1 Cola2,7 Weißwein3 Bier4,5 Schwarzer Kaffee5 Milch6,9 Eiweiß7,8 Seifenlauge12
33
Altklausuren ? "Guckst Du! " www.chemie.uni-hamburg.de/studium/praktika/medizin/index.html
34
Neutronen, Protonen im Kern (Nukleonen) und Elektronen in der Hülle Alle Materie besteht aus Atomen als kleinste Bestandteile bis 1980 - für Chemiker reicht das heute noch (Quarks & Co) Atome bestehen aus 3 Arten von Elementarteilchen:
35
Präfices zu Masseinheiten FaktorPräfixSymbol 10 18 exaE 10 15 petaP 10 12 teraT 10 9 gigaG 10 6 megaM 10 3 kiloK 10 2 hectoh 10 1 decada 10 -1 decid 10 -2 centic 10 -3 millim 10 -6 micro 10 -9 nanon 10 -12 picop 10 -15 femtof 10 -18 attoa
36
Atomkern: 99.9% der Atommasse Radius: 1 bis 10 fm Schematisierter Aufbau des Atoms Radius eines Atoms ca. 100 pm = 10 5 fm.
37
Ladung und Masse der drei wichtigsten Elementarteilchen Das Atom Protonp+p+ +1 1.0073 1.6. 10 -24 Neutronn0 1.0087 1.6. 10 -24 NameSymbolRelative Ladung Relative Masse Absolute Masse (in g) Elektron e - 5. 10 -4 9.1. 10 -28
38
Summe von Protonen und Neutronen Massenzahl (A) Der Atomkern Protonenzahl = Kernladungszahl (KLZ) = Ordnungszahl (Z) = Zahl der Elektronen Elementsymbol Massenzahl Ordnungszahl M A Z Bezeichnungsweise: Cl 35 17 z.B.
39
Nuklide mit gleichem Z und ungleichem A Isotope eines Elements stabile natürliche instabile künstliche Nuklide (Isotope) Instabile Nuklide (Isotope) sind radioaktiv! Nuklide und Isotope M A Z Cl 35 17 z.B. Cl 37 17 und Atome mit bestimmter Ordnungs- und Massenzahl Nuklide
40
Beispiele 12 C (Kohlenstoff-12), 14 C (Kohlenstoff-14), 31 P (Phosphor-31) Isotopie H + 1 1 H + 2 1 = D + H + 3 1 = T + Protium Deuterium Tritium Die Isotope des Wasserstoffkerns
41
Die chemischen Elemente Chemisches Element (stoffliche Definition) Stoff, der aus einem oder mehreren Isotop(en) besteht Elemente haben Namen und ein Elementsymbol, die gleichen wie die Isotope, die sie aufbauen. (Natürliche) Isotopenhäufigkeit Isotopenzusammensetzung der natürlich vorkommenden Elemente Die natürlichen Elemente setzen sich in der Regel aus mehreren stabilen oder instabilen Isotopen zusammen!
42
kleinem Z (leichte Elemente) grossem Z (schwere Elemente ) Protonenzahl ≈ Neutronenzahl Protonenzahl < Neutronenzahl Bei Elementen mit Elemente
43
Elemente mit Namen, Elementsymbol, Ordnungszahl (Z), Atommasse
44
Atommasse und Stoffmenge Absolute Atommassen sind sehr klein, daher umständlich im Gebrauch => relative Atommasse
45
Atommasse und Stoffmenge
46
Kein Element besitzt eine ganzzahlige Atommasse! ≠ Gründe: - Protonen-/Neutronenmasse 1 - Massendefekt bei der Atombildung - Natürliche Isotopenverteilung
47
Element Isotop rel. Häufigkeit (%) H 1 H 99.985 2 H 0.015 C 12 C 98.89 13 C 1.11 N 14 N 99.63 15 N 0.37 O 16 O 99.759 17 O 0.037 18 O 0.204 S 32 S 95.00 33 S 0.76 34 S 4.22 36 S 0.02 z.B. Kohlenstoff: 0.9889·12 + 0.011·13 =12.011 z.B. Schwefel: 0.95·32 + 0.0076·33 0.0422·34 + 0.012·36=32.09 32 S= 31.97207070
48
F 19 9 = Fluor-19 Anzahl Protonen ? 9 Anzahl Elektronen ? 9 (Atome sind neutral) Anzahl Neutronen ? 19 – 9 = 10 Masse eines Atoms? 19 x 1,6 10 -24 g = 3,04 x 10 -23 g 1 mol 19 F = 19 g 19/3,04 x 10 -23 = 5,8 10 23 Avogadrozahl (6,023 x 10 23 Teilchen)
49
1mol eines Elementes entspricht der relativen Atommasse in g Stoffmenge Beispiel: Eisen, Fe 1mol einer chemischen Verbindung entspricht der relativen Molekülmasse in g
50
Radioaktivität, Radioisotope und Kernchemie Typische Bindungsenergie : 8 MeV oder 100 MJ/mol pro Nukleon: Protonen und Neutronen (Nukleonen) im Atomkern: Zusammenhalt durch spezifische Kernkräfte Reichweite: nur einige fm
51
Typische Bindungsenergie : 8 MeV oder 100 MJ/mol pro Nukleon: Exkurs: Energie - Größenordnungen 1g Wasser um 1 °C erwärmen = 4.18 J 4.18 * 18 = 0,075 kJ/mol Chem. Reaktion: 2 H 2 + O 2 = 2 H 2 O 290 kJ/mol Bergsteiger m = 100 kg, 1000 m Höhenunterschied: Potentielle Energie: E pot = m · g · h = 100 · 9.81 · 1000 = 981 kJ PKW mit v = 110 km/h = ca. 30 m/sec und m = 1000 kg Masse Kinetische Energie: E kin = ½ m · v 2 = ½ ·1000 · 30 2 = 450 kJ
52
Von etwa 1000 bekannten Nukliden sind nur ca. 1/3 stabil. instabile Kerne spontaner Zerfall unter Abgabe von energiereicher Strahlung = Radioaktivität Lebensdauer der radioaktiven Nuklide sehr unterschiedlich Halbwertszeit t = Zeit bis die Hälfte einer Anzahl von Atomen zerfallen ist
53
Radioaktivität in % Vielfaches der Halbwertzeit t 1/2
54
Radioaktive Strahlung Der radioaktive Zerfall entspricht einer spontanen Kernreaktion, die mit radioaktiver Strahlung verbunden ist † c ist die Lichtgeschwindigkeit
55
Nachweis der radioaktiven Strahlung Radioaktive Strahlung wirkt auf Materie ionisierend (Nachweis). Molekulare Materie wird dadurch zerstört Ablenkung radioaktiver Strahlung ( ) im elektrischen Feld (Außerdem : E = mc 2 = h Positron & Elektron aus -Strahlung)
56
Schematisierte Darstellung von Kernzerfällen Häufige Zerfälle M A Z
57
Schematisierte Darstellung von Kernzerfällen + + e - 2 Seltenere Zerfälle M A Z
58
Induzierte Kernreaktionen Kernfusionsreaktor (Vision): Künstliche Kernreaktionen Kernspaltungsreaktor:
59
Teilchenbeschleuniger (Cyclotron): Induzierte Kernreaktionen z.B. erforderlich bei Positronen-Emissions-Tomographie (PET) als (teure) medizinische Diagnosemethode 1500 €
60
Nüchterner Patient ißt 18 F-Dehydroglucose = Zucker mit 18 F-Isotop (radioaktiv) (Halbwertszeit 18 F: 110 min) reichert sich in Bereichen mit hohem Stoffwechsel an Positronen – Emissionstomographie (PET) Tumor
61
Tumore
62
Induzierte Kernreaktionen Natürliche (!) Kernreaktionen (kosmische Strahlung in Atmosphäre) in lebender PflanzeVerhältnis konstant (CO 2 Aufnahme) Altersbestimmung ausVerhältnis (Messung der Radioakt.) Gehalt nimmt ab Nach Absterben Radiocarbonmethode (bis 40´000 Jahre) (Nobelpreis 1960) (t 1/2 = 5730 a)
63
Alufolie Blei Papier elektromagnet. Strahlung Elektron 4 He 2+ Radioaktivität
64
Biochemisch und medizinisch wichtige Radioisotope Radioaktive Nuklide: Biologie: Markierung von Molekülen bei chemischen Vorgängen ”Tracerelemente“ Medizin: Diagnostik & Therapie
65
Die Elektronenhülle Das chemische Bindungsverhalten wird durch die Elektronenhülle bestimmt. Wechselwirkung
66
Die Elektronenhülle Das chemische Bindungsverhalten wird durch die Elektronenhülle bestimmt. Die Elektronen haben nicht alle die gleiche Energie. Sie verteilen sich auf diskrete Energieniveaus. · Die Energieniveaus sind charakterisiert durch vier sog. Quantenzahlen und ordnen sich in Schalen. · Wichtige Aussagen:
67
Hauptschalen: Hauptquantenzahl n: n=1 K-Schalen=2 L-Schale n=3 M-Schalen=4 N-Schale maximale Elektronenzahl 2n 2 · Unterschalen: Nebenquantenzahl : =0 s =1 p =2 d =3 f Maximum von : (max) = n - 1 · Magnetquantenzahl m: diskrete Werte zwischen - und + -, - + 1,...0... – 1, · Spinquantenzahl s = Eigendrehimpulsquantenzahl s: 1/2 · Die Elektronenhülle z.B.: n=2 22 2 =8 z.B.: n=2 =0,1 (s,p) z.B.: =1 m=-1,0,1
68
Elektronischer Zustand und Elektronenkonfiguration Jedes Elektron eines Atoms => bestimmter Satz an Quantenzahlen => entspricht eigenem elektronischen Zustand => mit entsprechenden energetischen Niveau des e - Elektronenkonfiguration => bestimmte Besetzung mit einem oder mehreren Elektronen => bezeichnet energetische Struktur des Atoms Der energetisch günstigste davon ist der Grundzustand. allgemeiner: Elektronen sind nicht unterscheidbar Pauli-Prinzip Die Elektronen eines Atoms unterscheiden sich in mindestens einer ihrer Quantenzahlen
69
Bezeichnung der Elektronenkonfiguration eines Atoms Zahl der Elektronen Hauptquantenzahl x n Nebenquantenzahl = 0 s = 1 p = 2 d = 3 f....... z.B. He 1s 2
70
Maximale Elektronenzahl pro Haupt- und Unterschalen (abgeleitet aus den Quantenzahlen)
71
2p2p Deutung der Quantenzahlen durch das Orbitalmodell und des Spins (Eigendrehimpuls) n=2, l =1, m=-1n=2, l =1, m=0 n=2, l =1, m=+1 n=3, l =0, m=0 2 Knoten 1 Knoten kein Knoten 1s n=2, l=0, m=0 zz y yy 2p2p 2p2p y z x 2s 3s z xx x n=1, l =0, m=0 Elektronen sind in der Hülle eines Atoms als stehende räumliche Welle aufzufassen. Der Wellencharakter ”verschmiert“ ein Elektron über weite Bereiche eines Atoms. Für verschmierte Elektronen gibt es nur Wahrscheinlichkeiten für den Aufenthalt. Der Aufenthaltsbereich eines Elektrons in einem Atom mit bestimmter Wahrscheinlichkeit (z.B. 90%) wird Orbital genannt. Heisenberg: p r) Unschärfe Impuls oder Ort
72
2p2p Deutung der Quantenzahlen durch das Orbitalmodell und des Spins (Eigendrehimpuls) n=2, l =1, m=-1n=2, l =1, m=0 n=2, l =1, m=+1 n=3, l =0, m=0 2 Knoten 1 Knoten kein Knoten 1s n=2, l=0, m=0 zz y yy 2p2p 2p2p y z x 2s 3s z xx x n=1, l =0, m=0 Elektronen sind in der Hülle eines Atoms als stehende räumliche Welle aufzufassen. Der Wellencharakter ”verschmiert“ ein Elektron über weite Bereiche eines Atoms. Für verschmierte Elektronen gibt es nur Wahrscheinlichkeiten für den Aufenthalt. Der Aufenthaltsbereich eines Elektrons in einem Atom mit bestimmter Wahrscheinlichkeit (z.B. 90%) wird Orbital genannt. Heisenberg: p r) Unschärfe Impuls oder Ort
73
Stehende Welle
74
http://www.orbitals.com/orb/ov.htm Orbitale & Programm
75
Regeln zur Ermittlung des Grundzustandes ( Zustand eines Atoms mit niederster Energie) 1. Niveaus haben mit steigendem Wert der Hauptquantenzahl höhere Energie, E. z.B. E(2s) > E(1s) (n=2,1) 2. Energiezunahme der Nebenquantenzahlen innerhalb einer Hauptquantenzahl mit steigendem : s < p < d < f ( =0,1,2,3) z.B. E(2p) > E(2s) ( =1,0)
76
Regeln zur Ermittlung des Grundzustandes ( Zustand eines Atoms mit niederster Energie) 3. Die Magnetquantenzahlen m innerhalb einer Nebenquanten quantenzahl ergeben energiegleiche (entartete) Niveaus. z.B. E(2p x ) = E(2p z ) = E(2p y ) ( =1; m = 1,0,-1) 4. Die beiden Spinquantenzahlen innerhalb eines Niveaus mit einer Magnetquantenzahl sind energiegleich; max. 2 Elektronen pro Niveau. z.B. E(2p,S=1/2) = E(2p,S=-1/2)
77
Regeln zur Ermittlung des Grundzustandes ( Zustand eines Atoms mit niederster Energie) 3. Die Magnetquantenzahlen m innerhalb einer Nebenquanten quantenzahl ergeben energiegleiche (entartete) Niveaus. z.B. E(2p x ) = E(2p z ) = E(2p y ) ( =1; m = 1,0,-1) 4. Die beiden Spinquantenzahlen innerhalb eines Niveaus mit einer Magnetquantenzahl sind energiegleich; max. 2 Elektronen pro Niveau. z.B. E(2p,S=1/2) = E(2p,S=-1/2)
78
Regeln zur Ermittlung des Grundzustandes 3. Die Magnetquantenzahlen m innerhalb einer Nebenquanten quantenzahl ergeben energiegleiche (entartete) Niveaus. z.B. E(2p x ) = E(2p z ) = E(2p y ) ( =1; m = 1,0,-1) jedes Kästchen = einem p-Orbital (entartet)^
79
Regeln zur Ermittlung des Grundzustandes 4. Die beiden Spinquantenzahlen innerhalb eines Niveaus mit einer Magnetquantenzahl sind energiegleich; max. 2 Elektronen pro Niveau. z.B. E(2p,S=1/2) = E(2p,S=-1/2)
80
Regeln zur Ermittlung des Grundzustandes 5. Bei energetisch gleichwertigen (entarteten) Niveaus inner- halb einer Unterschale erfolgt zunächst Besetzung mit je einem Elektron (mit der gleichen Spinquantenzahl). z.B. 2p,3e - Wenn alle Niveaus einfach besetzt sind, erfolgt sukzessive Doppelbesetzung (mit der anderen Spinquantenzahl) (Hund'sche Regel). z.B. 2p,4e -
81
Die Elektronen der äussersten Schale nennt man Valenzelektronen. Elektronenkonfiguration der ersten zwölf Elemente des Periodensystems
82
Deutung der Quantenzahlen n,l im Energieniveauschema Hauptschalen können sich ”durchdringen“ und eine den Regeln der Quantenzahlen widersprechende energetische Abfolge verursachen.
83
x, y, z entspricht den Magnetquanten- zahlen m = 1, -1, 0. Pfeile symbolisieren die Spinquanten- zahlen 1/2. Energieniveauschema für das Kohlenstoffatom (Grundzustand) Einbeziehung der Quantenzahlen n,, m, s angeregter Zustand
84
Energieniveauschema für das Kohlenstoffatom (angeregter Zustand)
85
Anregungsenergie Energetische Differenz zwischen Grund- und einem angeregten Zustand = Anregungsenergie (Absorption). Grundzustand Die Anregungsenergie wird frei, wenn ein angeregter Zustand in den Grundzustand zurückfällt = Emission h = 6.626·10 -34 J·s (h ist das Planck´sche Wirkungsquantum [Joule · Sekunde]) = Frequenz c = Lichtgeschwindigkeit = Wellenlänge E = h· h · c
86
Das Prinzip des Absorptions- spektrometers (Spektralphotometer) Transmission T: T = I/I 0 Absorption A, (E) A = - log T I0I0 I0I0 I Probe Lampe
87
Das Prinzip des Absorptions- spektrometers (Spektralphotometer) Transmission T: T = I/I 0 Absorption A, (E) A = - log T I0I0 I0I0 I Probe Lampe
88
Anregungsspektrum von Chlorophyll Chlorophyll-B Chlorophyll-A
89
Farbwahrnehmung des Auges: Identisch mit Absorptionsspektrometers nach Einstrahlung von Weisslicht. Wahrgenommener Strahl: Komplementärfarbe zur absorbierten Farbe der Probe. Komplementärfarben z.B. blau + orange = weiß
90
Farben und Wellenlängen im sichtbaren Bereich des elektromagnetischen Spektrums *Die angegebenen Wellenlängenbereiche gelten nur ungefähr
91
Sauerstoffsättigung
92
Modellvorstellung zum Spin eines Elektrons
93
Atomkerne vergleichbarer Kerndrehimpuls z.B. der -Kern (s = ½) Der Spin der Atomkerne im Magnetfeld im Magnetfeld: parallel und antiparallel nicht mehr energiegleich! abhängig von chem. Umgebung "Fingerabdruck" => Analytik Kernresonanzspektroskopie/NMR Enzyme 3-dim. Struktur Nobelpreis 2002
94
H 2 O ( 1 H-Kern: Wasser): verschiedene chemische Umgebung und Konzentrationen der Wasserstoffkerne. Das Prinzip der Kernspintomographie Anwendung in der Medizin: Kernspintomographie engl. Magnetic Resonance Imaging (MRI) => unterschiedliche Absorption => Kontrast Einsatz: "Weichteile" Bauchhöhle, Niere…
95
Das Periodensystem der Elemente (PSE) Das Periodensystem ensteht durch Reihung der Elemente nach steigender Kernladungszahl und Zusammenfassung chemisch verwandter Elemente in Gruppen. Die Änderung der Elektronenhülle beim Übergang von einem Element zum nächsten folgt dem sog. Aufbauprinzip.
96
Reihung der Energieniveaus s. Ermittlung der Grundzuständen von Atomen => Zusätzliche Effekte verursachen bei Vielelektronen- systemen gelegentlich veränderte Reihungen. Aufbauprinzip der Elektronenhülle der Elemente im PSE
97
Reihenfolge bei der Auffüllung der Orbitale innerhalb der Perioden des Periodensystems gegeben durch das Aufbauprinzip
98
Das Periodensystem der Elemente 1s Rumpf [He] [Ne] [Ar] [Kr] [Xe] [Rn] Ende 21410 6 2p 3p 4p 5p 6p 3d 4d 5d 6d 4f 5f 2s 3s 4s 5s 6s 7s Start Periode: horizontal (links – rechts) Gruppe: vertikal (oben - unten)
99
Hauptgruppen Nebengruppen
100
Chemische Familien des PSE Einteilung nach Gruppen - Hauptgruppenelemente (gekennzeichnet durch Auffüllung von s- und p-Schalen) - Nebengruppenelemente (gekennzeichnet durch Auffüllung von d- oder f-Schalen )
101
Chemische Familien des PSE Einteilung nach Perioden - erste, zweite oder dritte Übergangsmetallreihe (3d-, 4d- oder 5d-Elemente) - Lanthanoide oder Actinoide (4f- oder 5f-Elemente) Periode: horizontal (links – rechts)
102
z.B. Metalle Nichtmetalle Einteilung nach chemischen Blöcken
103
Biochemisch und medizinisch wichtige Elemente Tc Ba Li Ag Pt Cd HgPbPo Fett: biochemisch wichtige Elemente; schwarz unterlegt: pharmakologisch oder toxikologisch bedeutsame Elemente; sonstige: Elemente, die in Naturstoffen bzw. Lebewesen vorkommen.
104
Massenanteil wichtiger Hauptgruppenelemente im menschlichen Körper
105
Biochemisch wichtige Nebengruppenelemente (Gesamtmenge bei einem 70 kg schweren Erwachsenen)
106
Biochemisch wichtige Nebengruppenelemente (Gesamtmenge bei einem 70 kg schweren Erwachsenen)
107
Pharmakologisch und toxikologisch wichtige Elemente
108
Atom- und Ionenradien, Ionisierungsenergie und Elektronenaffinität Atomradien (Atome und Ionen werden als kugelförmig angenommen) Deutung ?
109
Kohlenstoff Elektronenkonfiguration: [1s 2 2s 2 2p 2 ] 6+ Kern K-Schale: 2e - 1s 2 (Rumpf) „Abschirmumg“ der Kernladung“ „Effektive Ladung für nächste Schale“ ca. 6 – 2 = 4 + 4+ L-Schale: 4e - : 2s 2 2p 2 (Valenz)
110
Kohlenstoff K-Schale: 2e - 1s 2 (Rumpf) 4+ L-Schale: 4e - : 2s 2 2p 2 (Valenz) Valenzelektronen geringe Abschirmung der Kernladung! Kern-Elektronen-Anziehung: keine !Näherung!
111
Kohlenstoff K-Schale: 2e - 1s 2 (Rumpf) 4+ L-Schale: 4e - : 2s 2 2p 2 (Valenz) Valenzelektronen geringere Abschirmung der Kernladung! Kern-Elektronen-Anziehung: keine !Näherung!
112
2. Periode: - Effektive Kernladung, Z eff Element: Li Be B C N O F Ne Z eff : 1 2 3 4 5 6 7 8 Valenz e - : Anziehungskraft: Li: F: Valenz e - „rücken näher an den Kern“ Atomradien nehmen von links nach rechts ab!
113
Atomradien innerhalb einer Gruppe ? von oben nach unten zunehmend: neue Schale! PeriodePeriode
114
Entfernen oder Hinzufügen von Elektronen von oder zu Atomen Ionenradien Auswahl von Ionenradien (pm) Radius des H + -Ions sehr klein!!! entspricht dem eines Protons! Bildung von positiv oder negativ geladene Ionen (Kationen oder Anionen)
115
Ionisierungsenergie Die Ionisierungsenergie eines Elements gibt an, wie leicht ein Elektron aus einem im gasförmigen Zustand befindlichen Atom des Elements abgelöst werden kann
116
Ionisierungsenergie Die Ionisierungsenergie eines Elements gibt an, wie leicht ein Elektron aus einem im gasförmigen Zustand befindlichen Atom des Elements abgelöst werden kann
117
Die periodische Änderung der ersten Ionisierungsenergien der Elemente O C B He N Ar Zn Kr Cd Xe Hg Rn LiNa Al K Ga Rb In Cs Lu Tl RaPu Ne 3000 2000 1000 0 2040 60 80 100
118
Elektronenaffinität E EA Elektronenaffinität: freiwerdende Energie E EA bei Elektronenaufnahme durch ein Atom oder Ion in der Gasphase E(g) + e - (g) E - (g)E EA Elektronenaffinitäten sind dann besonders günstig (negativ), wenn durch das Hinzufügen eines Elektrons ein Schalenabschluss (stabile Elektronenkonfiguration) erreicht wird
119
Übersicht periodisches Verhalten Atom- und Ionenradien, Ionisierungsenergie und Elektronenaffinität von Elementen
123
Starke chemische Wechselwirkungen zwischen Atomen Definition : ”Eine chemische Bindung entsteht dann, wenn die Gesamtenergie der gebundenen Atome niedriger ist als die der einzelnen ungebundenen Atome“. 1) Atombindung kovalente Bindung,Elektronenpaarbindung chemische Bindung
124
Regeln zur Atombindung Valenzelektronen, die keine Bindung eingehen, bezeichnet man als freie Elektronenpaare. Mehrfachbindungen Oktettregel: Ein gebundenes Atom besitzt 8 Elektronen unter Einbezug der gemeinsamen Elektronenpaare (Wasserstoff 2). gefüllte Schale (2n 2 mit n=2) Edelgaskonfiguration Gilt für 2. Periode! n = 2 = L-Schale (2n 2 e - = 8)
125
Bildung einfacher Moleküle aus Atomen Typisches Merkmal der Atombindung: Sie ist gerichtet!
126
Valenzstrichformel (Lewisformeln), Chemische Formel Formalladung: Formalladungen werden mit oder bezeichnet Mesomerie (Resonanz): Beschreibung des elektronischen Zustand durch Verschiebung von Elektronenpaaren mit mehreren (oft gleichwertigen) Valenz- strichformeln.
127
Mesomere Grenzstrukturen — Behelfsmäßige Beschreibung des wirklichen elektronischen Zustands — Mesomerie deutet eine andere (delokalisierte) Elektronenverteilung — Mesomere Grenzformen werden durch einen Doppelpfeil getrennt nicht real! sondern "Mischung aus Engel & Teufel"
128
Ausnahmen von der Oktettregel Elektronenmangelverbindungen durch Unterschreitung des Oktetts. Tritt bei Atomen mit einer geringen Zahl an Valenzelektronen auf. z.B. Elektronensextett
129
Ausnahmen von der Oktettregel Aufweitung über Valenzschale = Hypervalenz. Auftreten: bei schweren Atomen ab der dritten Periode auf (d-Orbitale). z.B. Elektronendezett z.B. SO 4 2-, PO 4 3- Ebenso:
130
Die polarisierte Atombindung und die Elektronegativität von Atomen In Atombindungen zwischen gleichen Atomen besteht eine gleichförmige Verteilung der Elektronen. Darstellung der Elektronenverteilung im H 2 -Molekül
131
Atombindungen mit ungleichen Bindungspartnern In Atombindungen mit ungleichen Bindungspartnern: meist.: Elektronenverteilung mit ihrem Schwerpunkt verschoben, man sagt die Bindung ist polarisiert. Im HCl-Molekül ist die Elektronendichte zum Cl-Atom hin verschoben
132
Übergang von kovalenter Bindung zur Ionenbindung 100% 0% Elektronegativitätsdifferenz 012 3 Ionen- bindung kovalente Bindung polare kovalente Bindung Ionenbindung verzerrte Ionen polarisierte kovalente Bindung Ionischer Charakter
133
++++ ---- Richtung der Polarisierung: Angabe durch Partialladungen ( , ) Polarisierte Atombindungen Ausmass der Polarisierung von Elektronenpaarbindungen: bestimmt durch die Elektronegativität der Bindungspartner Partialladungen: messbare Grösse Polarität von Molekülen
134
Elektronegativität Relative Elektronegativitäten der Hauptgruppenelemente Elektronegativitätsskala von L. Pauling (Werte von 0.8-4.0) H 2.2 He – Li 1.0 Be 1.6 B 2.0 C 2.6 N 3.0 O 3.4 F 4.0 Ne – Na 0.9 Mg 1.3 Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.2 Ar – K 0.8 Ca 1.0 Ga 1.8 Ge 2.0 As 2.2 Se 2.6 Br 3.0 Kr – Rb 0.8 Sr 0.9 In 1.8 Sn 2.0 Sb 2.1 Te 2.1 I 2.7 Xe – Cs 0.8 Ba 0.9 Tl 2.0 Pb 2.3 Bi 2.0 Po 2.0 At 2.2 Rn – Elektronegativität: Vermögen eines Atoms Bindungselektronenpaare an sich zu ziehen.
135
Bindungspolarität und das Dipolmoment von Molekülen Viele Moleküle: elektrisches Dipolmoment aufgrund Bindungspolaritäten
136
Dipolmoment von Wasser (H 2 O) und Ammoniak (NH 3 ) Die einzelnen Bindungspolaritäten addieren sich vektoriell zum resultierenden Dipolmoment. X
137
Effekt eines elektrostatischen Feldes auf die Orientierung von Molekülen mit Dipolmoment mit el. Feld Moleküle mit Dipolmoment (polare Moleküle) Ausrichtung im elektrischen Feld aus ohne el. Feld
138
HF 6.38 565 1.8 HCl 3.44 431 1.0 HBr 2.60 364 0.8 VerbindungDipolmoment 10 30 /C. m Bindungsenergie kJ.mol -1 Elektronegativitäts -differenz HI1.27297 0.5 Die Elektronegativitätsdifferenz von Bindungspartnern und ihre physikalischen Folgen
139
Bindungslänge HCl: 1.27·10 -10 m Dipolmoment: D = 3.44·10 -30 Cm (D = q·r·e - ) H ___ Cl +0.17-0.17 ++ -- q = D/r · e - = 3.44·10 -30 / 1.27·10 -10 ·1.602·10 -19 = 0.1688 0.17
140
Elektronegativität Relative Elektronegativitäten der Hauptgruppenelemente Elektronegativitätsskala von L. Pauling (Werte von 0.8-4.0) H 2.2 He – Li 1.0 Be 1.6 B 2.0 C 2.6 N 3.0 O 3.4 F 4.0 Ne – Na 0.9 Mg 1.3 Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.2 Ar – K 0.8 Ca 1.0 Ga 1.8 Ge 2.0 As 2.2 Se 2.6 Br 3.0 Kr – Rb 0.8 Sr 0.9 In 1.8 Sn 2.0 Sb 2.1 Te 2.1 I 2.7 Xe – Cs 0.8 Ba 0.9 Tl 2.0 Pb 2.3 Bi 2.0 Po 2.0 At 2.2 Rn – Elektronegativität: Vermögen eines Atoms Bindungselektronenpaare an sich zu ziehen.
141
Übergang von kovalenter Bindung zur Ionenbindung 100% 0% Elektronegativitätsdifferenz 012 3 Ionen- bindung kovalente Bindung polare kovalente Bindung Ionenbindung verzerrte Ionen polarisierte kovalente Bindung Ionischer Charakter
142
Die Struktur von Molekülen Valenzbindungstheorie & Hybridisierung a) Valenzbindungstheorie Atombindung: Wechselwirkung von Orbitalen = Überlappung Distanz zwischen H-Atomen Bindungsdistanz Bindungsenergie r H 2 Molekül Energie in kJ/mol HH
143
Die -Bindung des H 2 -Moleküls Durchdringung der Orbitale führt zur ”Resonanz“ Energiegewinn bei Bindung. H H H 2 z z Gegensatz zum Valenzstrichmodell (H-H) Valenzbindungstheorie bilanziert nicht allein Valenzelektronen Vorhersage räumlicher Atomanordnungen in Molekülen! Berücksichtigung der Ausrichtung, d.h. die Geometrie der Orbitale für optimale Überlappung
144
Überlappung von p und s Orbital -Bindung von HF Valenzelektronen von HF
145
-Bindung aus 2p und 1s Orbital Orbitalüberlappung Elektronenwolke von zylindrischer Symmetrie Überlappung von p und s Orbital
146
H 2 O-Molekül Überlappung von 2p- und 1s-Orbitalen Valenzelektronen - Bildung zweier (O-H)-Bindungen - Bindungswinkel hier 90°, experimentell 104.5° Paarung von Elektronen & Überlappung der Orbitale.
147
H 2 O-Molekül Überlappung von 2p- und 1s-Orbitalen Valenzelektronen - Bildung zweier (O-H)-Bindungen Bindungswinkel hier 90° experimentell 104.5° Paarung von e - & Überlappung der Orbitale
148
Doppel- und Dreifachbindung ( -Bindungen) Beispiel: N 2, N N Elektronenkonfiguration Paarung der Elektronen unter Bildung einer -Bindung mit zwei Orbital- lappen (nicht rotationssymmetrisch bzgl. Verbindungsachse) Überlappung zweier ungepaarter Elektronen benachbarter p-Orbitale die seitlich parallel zueinander stehen.
149
Das N 2 -Molekül Bildung von zwei -Bindungen aus der seitlichen Überlappung von p x - oder p y -Orbitalen Die elektronische Struktur des N 2 -Moleküls. Die beiden Atome sind durch eine -Bindung und zwei -Bindungen gebunden x z y 2p N z z z (2p, 2p ) y yy z x zz x x N
150
Hybridisierung Grund- zustand angeregter Zustand sp 3 -Hybri- disierung sp 2 -Hybri- disierung sp-Hybri- disierung Beispiel: Kohlenstoffatom EE Hybridisierung: ”Mischung“ von Orbitalen mit verschiedenen Nebenquantenzahlen.
151
Hybridisierung Grund- zustand angeregter Zustand sp 3 -Hybri- disierung sp 2 -Hybri- disierung sp-Hybri- disierung Beispiel: Kohlenstoffatom EE hybridisierte Orbitale sind energiegleich. Hybridisierung neue Formen Hybridisierung: ”Mischung“ von Orbitalen mit verschiedenen Nebenquantenzahlen.
152
Form der Hybride 2x sp-Hybride 180°
153
sp : 3 : sp 2 : trigonal sp: linear tetraedrisch Form der Hybride 4x sp 3 -Hybride
154
Hybridisierungen unter Einbezug von d-Orbitalen Beispiel: Phosphoratom
155
sp 3 d: trigonal-bipyramidal sp 3 d 2 : oktaedrisch Hybridisierungen unter Einbezug von d-Orbitalen
156
- nicht-hybridisiertes p-Orbital überlappt seitlich mit dem des benachbarten C-Atoms. Bildung einer -Bindung. Weitere Beispiele zur Hybridisierung Methan (sp 3 -Hybrid) Ethen CH 2 =CH 2 (sp 2 -Hybrid) Bindungen in Ethen: - jedes C-Atom 3 -Bindungen (2 C-H und eine C-C).
158
Bindungslänge und Bindungsenergie Gleichgewichtsabstand zwischen Abstossung durch positiv geladenen Kernrümpfe und Anziehung durch Ausbildung der Atombindung. · Mittlerer Abstand Bindungslänge. Spaltung einer Atombindung: Zuführung der Bindungsenergie. · Atombindung zwei Atome auf einem bestimmten Abstand · Distanz zwischen H-Atomen Bindungsdistanz Bindungsenergie r Energie in kJ/mol HH
159
H2H2 (Wasserstoff)H-H 0.074436 kJ/mol H2OH2O (Wasser)O-H 0.096463 kJ/mol NH 3 (Ammoniak)N-H 0.100391 kJ/mol Molekül Bindungslänge [nm]Bindungsenergie CH 4 (Methan)C-H0.107 413 kJ/mol
160
Die Ionenbindung 100% 0% Elektronegativitätsdifferenz 012 3 Ionen- bindung kovalente Bindung polare kovalente Bindung Ionenbindung verzerrte Ionen polarisierte kovalente Bindung Ionischer Charakter
161
b) Die ionische Bindung Ionenbindung: Elektrostatische Anziehung zwischen gegensätzlichen Ladungen Ionisierungsenergie: K(g) K (g) + e - (g) +418 kJ/mol Elektronenaffinität: Cl(g) + e - (g) Cl - (g) -349 kJ/mol K(g) + Cl(g) K (g) + Cl - (g) +69 kJ/mol Anionen (neg.) und Kationen (pos.) Bildung eines Ionenpaares z.B. Kaliumchlorid: Bildung von 1 mol Kalium- und Chloridionen im Gaszustand
163
Bildung von Ionenpaaren Chem.Wirklichkeit: selten Ionenpaare, sondern Ionenkristalle (Salze) K + (g) + Cl - (g) KCl(s) + Energie Die freiwerdende Energie nennt man die Gitterenergie. regelmässige räumliche Anordnung der Ionen Ionengitter prinzipiell unendliche Ausdehnung. Reale Kristalle endliche Grösse K K + Cl Cl – e – Ionenpaar Na Cl 2
164
Na + Natrium-IonF-F- Fluorid-Ion K+K+ Kalium-IonCl - Chlorid-Ion Mg 2+ Magnesium-IonBr - Bromid-Ion Ca 2+ Calcium-IonI-I- Iodid-Ion H+H+ Wasserstoff-Ion (Proton)OH - Hydroxid-Ion Cu 2+ Kupfer(II)-IonS 2- Sulfid-Ion Fe 2+ Eisen(II)-IonSO 4 2- Sulfat-Ion Fe 3+ Eisen(III)-IonNO 3 - Nitrat-Ion Co 2+ Cobalt(II)-IonPO 4 3- Phosphat-Ion NH 4 + Ammonium-IonHCO 3 - Hydrogencarbonat-Ion CH 3 COO - Acetat-Ion Formel und Namen einiger wichtiger Ionen Beispiele von Ionen
165
Modell eines Ionengitters (Beispiel: KCl oder NaCl) Kleine Kugeln: Kationen Grosse Kugeln: Anionen Kationen und Anionen- Gitter durchdringen sich und sind jeweils kubisch-dichteste Kugelpackungen
166
Natriumchlorid-Typ (NaCl) Cäsiumchlorid-Typ (CsCl) Zinkblende -Typ (ZnS) Ionische Festkörper
167
abstands- aber nicht richtungsabhängig!!!!!!!! energiegleich! Unterschied zur Elektronenpaarbindung
168
Einfachstes Bild: - Dreidimensionale Struktur positiv geladener Atomrümpfe c) Die metallische Bindung - Valenzelektronen sind delokalisiert (nicht an ein bestimmtes Atom gebunden) und frei beweglich (”Elektronengas“) - elektrische und Wärmeleitfähigkeit und Glanz - Die Anziehungskräfte zwischen Atomrümpfen und delokalisierten Valenzelektronen bilden die metallische Bindung
169
Materie, Stoffe und Stoffgemische, Verbindungen - Stoffe: rein oder Stoffgemische - Stoff: charakterisiert durch bestimmte physikalische und chemische makroskopische Eigenschaften z.B. Siedepunkt - einzelne Atome oder Moleküle mikroskopische Eigenschaften. Definition: Materie ist alles was Raum beansprucht und Masse besitzt und besteht in der Regel aus unterschiedlichen Stoffen
170
Materie, Stoffe und Stoffgemische, Verbindungen Reine Stoffe: Elemente und Verbindungen Elemente aus einer Atomsorte Verbindungen aus einer Molekülsorte definierte chem. und phys. Eigenschaften: Dichte, Sdpkt.
171
Homogenes Gemisch: mikroskopisch einheitliches Gemisch reiner Stoffe. Eine abgegrenzte Menge eines homo- genen Stoffes nennt man Phase. Heterogene Stoffgemische: bestehen makroskopisch erkennbar aus mehreren Phasen. z.B. Sand & Wasser Materie, Stoffe und Stoffgemische, Verbindungen
173
Aggregatszustände Aggregatszustände sind die Erscheinungsformen von Materie fest (s) (solid) flüssig (l) (liquid) gasförmig (g) (gaseous) Ordnung: nimmt ab E kin : nimmt ab gasförmig (g) flüssig (l) fest (s) (g)( ) (s)
174
Feste Stoffe Feste Stoffe: definierte Formen und Volumen. Mikroskopisch kompaktester Zustand mit grösster Ordnung & geringster Bewegungsenergie der Teilchen (E kin ). a) Metalle bestehen aus Kationen von Elektronengas umgeben Vier Klassen c) Vernetzte Festkörper bestehen aus Atomen, durch Atombindungen unendlich verknüpft d) Molekulare Festkörper bestehen aus meist geordneten Ansammlungen einzelner Moleküle b) Festkörper bestehen aus Kationen und Anionen
175
KlasseBeispielecharakteristische Eigenschaften MetalleElemente der 1. und 2. Hauptgruppe, Übergangsmetalle schmiedbar, duktil, glänzend, leiten elektrischen Strom und Wärme gut ionische Festkörper NaCl, KNO 3, CuSO 4. 5H 2 O hart, starr, spröde, hohe Schmelz- und Siedepunkte, in Wasser lösliche Verbindungen, leiten in Lösung den elektrischen Strom vernetzte Festkörper B, C, schwarzer Phosphor, BN, SiO 2 hart, starr, spröde, sehr hohe Schmelz- und Siedepunkte, in Wasser unlöslich molekulare Festkörper BeCl 2, S 8, P 4, I 2, Eis, Glucose, Naphthalin reaktiv, niedrige Schmelz- und Siedepunkte, im reinen Zustand spröde Feste Stoffe
176
KlasseBeispielecharakteristische Eigenschaften MetalleElemente der 1. und 2. Hauptgruppe, Übergangsmetalle schmiedbar, duktil, glänzend, leiten elektrischen Strom und Wärme gut ionische Festkörper NaCl, KNO 3, CuSO 4. 5H 2 O hart, starr, spröde, hohe Schmelz- und Siedepunkte, in Wasser lösliche Verbindungen, leiten in Lösung den elektrischen Strom vernetzte Festkörper B, C, schwarzer Phosphor, BN, SiO 2 hart, starr, spröde, sehr hohe Schmelz- und Siedepunkte, in Wasser unlöslich molekulare Festkörper BeCl 2, S 8, P 4, I 2, Eis, Glucose, Naphthalin reaktiv, niedrige Schmelz- und Siedepunkte, im reinen Zustand spröde Feste Stoffe
177
KlasseBeispielecharakteristische Eigenschaften MetalleElemente der 1. und 2. Hauptgruppe, Übergangsmetalle schmiedbar, duktil, glänzend, leiten elektrischen Strom und Wärme gut ionische Festkörper NaCl, KNO 3, CuSO 4. 5H 2 O hart, starr, spröde, hohe Schmelz- und Siedepunkte, in Wasser lösliche Verbindungen, leiten in Lösung den elektrischen Strom vernetzte Festkörper B, C, schwarzer Phosphor, BN, SiO 2 hart, starr, spröde, sehr hohe Schmelz- und Siedepunkte, in Wasser unlöslich molekulare Festkörper BeCl 2, S 8, P 4, I 2, Eis, Glucose, Naphthalin reaktiv, niedrige Schmelz- und Siedepunkte, im reinen Zustand spröde Feste Stoffe
178
KlasseBeispielecharakteristische Eigenschaften MetalleElemente der 1. und 2. Hauptgruppe, Übergangsmetalle schmiedbar, duktil, glänzend, leiten elektrischen Strom und Wärme gut ionische Festkörper NaCl, KNO 3, CuSO 4. 5H 2 O hart, starr, spröde, hohe Schmelz- und Siedepunkte, in Wasser lösliche Verbindungen, leiten in Lösung den elektrischen Strom vernetzte Festkörper B, C, schwarzer Phosphor, BN, SiO 2 hart, starr, spröde, sehr hohe Schmelz- und Siedepunkte, in Wasser unlöslich molekulare Festkörper BeCl 2, S 8, P 4, I 2, Eis, Glucose, Naphthalin reaktiv, niedrige Schmelz- und Siedepunkte, im reinen Zustand spröde Feste Stoffe
179
Dichteste Kugelpackungen der Metalle Schichtfolge AB Schichtfolgen:ABC ABA
180
kubischhexagonal Kubisch dichteste Kugelpackung (KDP) Hexagonal dichteste Kugelpackung (HDP) Dichteste Kugelpackungen der Metalle
181
Natriumchlorid-Typ (NaCl) Cäsiumchlorid-Typ (CsCl) Zinkblende -Typ (ZnS) Ionische Festkörper
182
Vernetzte Festkörper Ausschnitt aus der Diamantstruktur ungeordnetes Netzwerk von SiO 2 = Quarzglas
183
Molekulare Festkörper Regelmässige Anordnung von Molekülen aufgrund zwischenmolekularer Kräfte, manchmal dichtest gepackt wie Atome in Metallen, sonst andere Anordnung Beispiel Eis ”Lockere“ Packung der H 2 O-Moleküle im Eis Zwischenmolekulare Kräfte: Wasserstoffbrücken- bindungen
184
Enamel 98-99 % Hydroxlyapatit Enameloid Apatit + Kollagen Dentin: Apatit + Kollagen Nerven & Blutgefäße Zahnwurzel Zahnzement (Knochengewebe) Zahnfleisch Pulpa (Zahnhöhle) Aufbau eines Zahnes
185
Biologisch relevante Calciumphosphatverbindungen Hydroxylapatit Ca 5 (PO 4 ) 3 OH
186
Knochen ebenfalls z.T. Hydroxylapatit spongiöses Knochenmaterial Knochen fortwährend Remodeling = Auf- und Abbau Unterschied zum Zahn!
187
Flüssige Stoffe Flüssige Stoffe haben: – zwischenmolekulare Kräfte – definiertes Volumen – keine stabile Form – mittlere Bewegungsenergie – nur teilweise Ordnung – im statistischen Mittel eine ungefähr gleiche Lage der nächsten Nachbarn Nahordnung – auf größere Distanz keine Regelmäßigkeiten keine Fernordnung
188
Flüssigkeiten besitzen im Gegensatz zu (idealen) Gasen zwischenmolekulare Kräfte Art und Stärke der Kräfte bestimmen folgende Eigenschaften einer Flüssigkeit: Schmelzpunkt, Siedepunkt, Dampfdruck, Oberflächenspannung (nach innen gerichtet, kleinste Oberfläche) und Zähigkeit (Viskosität).
189
Typen zwischenmolekularer Anziehungskräfte in Flüssigkeiten und in molekularen Festkörpern Zwischenmolekulare (intermolekulare) Anziehungskräfte/-energien Dipol-Dipolkräfte: elektrostatische Kräfte zwischen ausgerichteten Dipolen schwächer als Bindungsenergie (Atombindung), metallische Bindung oder Ionenbindung Orientierung von polaren Molekülen __ ++ ++ ++ ++ ++ __ __ __ __ ++ __ __ ++ ++ __ __ __ ++
190
Fluktuierende momentane Dipole (hervorgerufen durch Bewegung der Elektronen) induzieren ausgerichtete Dipole in benachbarten Atomen und Molekülen (z.B. Edelgasen) London- oder Dispersionskräfte (van der Waals-Kräfte) Momentane, fluktuierende Dipole benachbarter Teilchen
191
im Zeitmittel = = Elektron ++ -- kein Dipol ! ++ für sehr kurze Zeit = Atomkern fluktuierender Dipol! -- London- oder Dispersionskräfte (van der Waals-Kräfte) Fluktuierende momentane Dipole: induzieren ausgerichtete Dipole in benachbarten Atomen und Molekülen (z.B. Edelgasen)
192
Chemieübungen Vor der Klausur im Januar 2009: Ort: MLK Platz 6 Zeit: 18.00-20.00 Uhr Aufgaben im Netz Genaue Termine werden noch bekannt gegeben.
193
Wasserstoffbrückenbindung Wasserstoffatom eines Moleküls mit positiver Partialladung: + ProtonendonatorProtonenakzeptor ++ -- elektronegativeres Atom eines benachbarten Moleküls - einsames Elektronenpaar: Anziehung überwiegend elektrostatische Kräfte Wasserstoffbrücke
194
+ + -- Assoziation von Wassermolekülen: Wasserstoffbrückenbindungen (---) gekennzeichnet Wasserstoffbrückenbindung
195
Die Wasserstoffbrückenbindung Siedepunkte Wasserstoff-Verbindungen der Elemente der 14.-17. Hauptgruppe Wasser flüssig! H 2 S gasförmig S-H Bdg. weniger polarisiert als O-H-Bdg. Zunahme der Bindungsstärke der Wasserstoffbrücken N–H... N < O–H... O < F–H... F
196
DNS = Desoxyribunucleinsäure (Gene) DoppelHelix: Doppelstrang Stränge: Zusammenhalt durch H-Brückenbindungen 3 H-Brücken komplementäre Basenpaare 2 H-Brücken
197
Ion-Ion250 nur zwischen Ionen Ion-Dipol15 Ionen und polare Moleküle Dipol-Dipol2 zwischen ruhenden polaren Molekülen 0.3 zwischen rotierenden polaren Molekülen Londonsche Dispersionskräfte 2 zwischen allen Arten von Molekülen Typ der Wechsel- wirkung typische Energie,* kJ mol -1 wechselwirkende Teilchen Wasserstoffbrücken 20Zwischen N, O, F; die Brücke ist ein H-Atom *Die typischen Wechselwirkungsenergien beziehen sich auf einen Abstand von 500 pm Überblick über die Stärke der einzelnen Kräfte
198
- Im idealen Gas haben Atome und Molekül keineWechselwirkungskräfte untereinander Gase - Gase breiten sich im Raum ungehindert aus. In abgeschlossenen Systemen charakterisiert durch ein Volumen - Gasatome oder -moleküle mittlere Geschwindigkeit v v 2 ~T/m - Zunehmende Geschwindigkeit (Temperatur) wachsender Druck Druck, p, auf die (Gefäss-)Wände aus (p = F/A)
199
Das allgemeine Gasgesetz für ideale Gase p = Druck (in Pa = Nm -2 ) V = Volumen (in m 3 ) n = Stoffmenge (in mol) R = allgemeine Gaskonstante (8.31 Jmol -1 K -1 ) T = Temperatur (in K) p. V = n. R. T Weitere gebräuchliche Einheiten für Druck (nicht-SI) 1013 Hektopascal = 1.013 bar = 760 mmHg = 760 Torr = 1 atm Verschiedene Proportionalitäten des Gasgesetzes sind eigene Gesetze: V 1/p Boyl`sches Gesetz (T = const) V T Gay-Lussac‘sches Gesetz (p = const) V n Satz von Avogadro
200
Satz von Avogadro V n oderV = Konstante. n Konstante = V m = V/n V m = Molvolumen Das Molvolumen eines idealen Gases bei Standardbedingungen (0°C oder 273.15K und 1.013 bar = 1.013 10 5 Pa) entspricht 22.4 L
201
Molvolumina verschiedener realer Gase in L bei 0 o C und Atmosphärendruck 22.4122.2622.40 22.43 ideal ArO2O2 H 2 N2N2 CO2CO2 22.00 Reale Gase: von V m abweichendes Molvolumen
202
Aggregats- zustände Bezeichnung Beispiele Verfahren zur Phasentrennung fest + festGemenge, Konglomerat Granit, Sand + Salz, Aspirin- tablette Sortieren, Sieben, Flotation, Scheidung nach Dichte, elektrostat. Trennung, Extraktion fest + flüssig SuspensionMalerfarbe, Schlamm Sedimentieren + Dekantieren, Zentrifugieren, Filtrieren flüssig + flüssig EmulsionMilch, CremeZentrifugieren, Scheidetrichter fest + gasförmig AerosolRauchSedimentieren, Filtrieren, elektrostatische Trennung flüssig + gasförmig AerosolNebel, SchaumSedimentieren Klassifizierung von heterogenen Gemischen Einteilung nach Aggregatszuständen der kombinierten Phasen Gase mischen sich immer homogen!
203
Phasenumwandlung, Zustandsdiagramme Schmelzen, Verdampfen, Sublimieren: Energiezufuhr (Schmelz-/Verdampfungswärme) während Phasenumwandlung: Temperatur konstant Aggregatszustand eines Stoffes: abhängig von Temperatur und Druck Änderung des Aggregatszustandes: Phasenumwandlung (Verdunsten unter Sdpkt.)
204
Zustands- oder Phasendiagramm von Wasser Gefriertrocknen Wasser sublimiert fest gasförmig schonendes Verfahren zum Entziehen von Wasser < 0° C Vakuum z.B. Instantkaffee, Proteine
205
Trennung heterogener Gemische Zur Trennung eines heterogenen Gemisches nutzt man meist die unterschiedlichen physikalischen Eigenschaften der Phasen Einige Trennverfahren
206
Flüssig/flüssig-Extraktion Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen
207
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser
208
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser
209
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser
210
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser
211
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser frischer Ether
212
Flüssig/flüssig-Extraktion hydrophob/ lipophil Trennung zweier Stoffe mit verschiedener Verteilung zwischen zwei Phasen Etherzugabe Stoff A in Wasser frischer Ether Gleichgewicht K = Verteilungskoeffizient, c A = Konzentration des Stoffes A in mol/L (g/L) Wenn die Verteilungskoeffizienten sehr ähnlich sind, muss das Verfahren zur vollständigen Trennung wiederholt werden (multiplikative Verteilung) z.B. K = 10: 1. Ausschütteln 10: 1 (91% in Ether 9% in H 2 O) 2. Ausschütteln10: 1 (8.2 % in Ether 0.8 % in H 2 O) 99.2 % in Etherphase (10/11 9)
213
Diffusion abhängig von Viskosität, Temperatur, Porengröße.. Konzentrationsausgleich in der Natur selten Diffusionsprozesse - Stofftransport Bewegung: Brown´sche´Molekularbewegung durchlässige Membran konzentriertverdünnt einfache Diffusion
214
Diffusion
215
Nierensteine & Chemie Niere Nierenfunktion Blutwäsche Dialyse Osmose/Diffusion sorgt für Konzentrationsausgleich Beginn Ende
216
Nierensteine & Chemie Niere Nierenfunktion Blutwäsche Dialyse Osmose/Diffusion Niere: semipermeable (halbdurchlässige) Membran HarnBlut s. M e m b r a n Erythrozyt (Häm) Ausscheidungen Ausscheidung (via Harn) von: - stickstoffhaltigen organischen Verbindungen - anorganischen Salzen - Giften & Abbauprodukten z.B. von Medikamenten
217
Diffusion
218
http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/
219
Dialyse Blutengiftung (Niere) semipermeable Membran halbdurchlässig (Teilchen < 10 nm)
220
Osmose - Osmotischer Druck semipermeable Membran ( für Solvens durchlässig ) p
221
Der osmotische Druck p osm = c. R. T hypertonisch schrumpfen in starker NaCl-Lsg. p osm (aussen)>p osm (innen) hypertonisch c: Konzentration des gelösten Stoffes, R: Gaskonstante, T: Temperatur in K p osm = 1bar, wenn 1mol Substanz in 22.4 L H 2 O oder 22.4 bar, wenn 1mol A in 1 L H 2 O Physiologische Kochsalzlösung!, 0.95g NaCl/100g H 2 O isotonisch in physiol. NaCl-Lsg. (keine Änderung) p osm (aussen) = p osm (innen) isotonisch Beispiel: Erythrozyten (rote Blutkörperchen) hypotonisch schwellen in H 2 O p osm (aussen)<p osm (innen) hypotonisch
222
Schema: - destilliertes Wasser: 1g Superabsorber ca. 1000 g H 2 O Superabsorber (Polymer) - Osmose - Wasserhahn (Ionen): 1g Superabsorber ca. 300 g H 2 O - Wasser mit 0.9 g NaCl/L (Urin): 1g Superabsorber ca. 60 g H 2 O
223
10 K + 10 Cl - semipermeable Membran für Protein undurchlässig außeninnen 5 Protein - 5 K + Donnan-Gleichgewicht Beginn III Membranpotential E log ([K + ] II, innen / [K + ] I,außen ) 70-80 mV III außeninnen 6 K + 6 Cl - 4 Cl - 5 Protein - 9 K + [KCl] II kleiner Gleichgewicht im Gleichgewicht [K + ] I. [Cl - ] I = [K + ] II. [Cl - ] II (6. 6 = 9. 4)
224
http://www2.chemie.uni-erlangen.de/projects/vsc/chemie-mediziner-neu/
225
c:\het_ggw02.html
226
Chemische Reaktionen Reaktionsgleichungen Chemische Reaktionen oder chemische Umsetzungen sind Stoffumwandlungen Reaktion H O H O 2 2 2 Mit chemischen Formeln und sog. stöchiometrischen Koeffizienten (Faktoren) versehen nennt man dies eine Reaktionsgleichung. Man schreibt Edukte Produkte
227
Stöchiometrie - Stöchiometrie einer Reaktionsgleichung: Ag + (aq) + Cl - (aq) AgCl - Bei chemischen Reaktionen treten damit keine Massenänderungen auf ausgeglichene Massenbilanz, Massenkonstanz, Massenerhaltung. - Für manche Reaktionsgleichungen gilt neben Erhaltung der Masse auch Erhaltung der Ladung Bilanzierung der Atome rechts und links des Reaktionspfeils mit kleinsten gemeinsamen Vielfachen ganzer Zahlen.
228
Typen chemischer Reaktionen Viele chemische Reaktionen haben (nicht systematische) Trivialbezeichnungen Verbrennung Reaktion mit Sauerstoff unter Bildung von CO 2, H 2 O, N 2 und der Oxide weiterer vorhandener Elemente. Beispiel: CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(g) Einteilung nach der Art der Edukte und Produkte SyntheseBildung der Produkte aus einfach aufgebauten Ausgangsstoffen. Beispiel:2 H 2 (g) + O 2 (g) 2 H 2 O(l) ZersetzungBildung einfach gebauter Produkte aus komplexeren Ausgangsstoffen. Beispiel:CaCO 3 (s) CaO(s) + CO 2 (g) Doppelte Aus- tauschreaktion (Metathese) Reaktionspartner tauschen Atome oder Ionen aus. Beispiel:2NaCl(aq) + Pb(NO 3 ) 2 (aq) 2NaNO 3 (aq) + PbCl 2 (s) Korrosion (Rostbildung) Langsame Reaktion eines Metalls mit Sauerstoff unter Bildung des Metalloxids. Beispiel:4Fe(s) + 3O 2 (g) 2Fe 2 O 3 (s)
229
Einteilung nach der ”Triebkraft“ der Reaktion Gas- entwicklung Bildung eines Gases. z.B.: CaCO 3 (s) + 2HCl(aq) CaCl 2 (aq) + H 2 O(l) + CO 2 (g) Triebkraft: Freisetzung eines Gases. FällungBildung eines Niederschlages beim Mischen zweier Lösungen. z.B. 3 CaCl 2 (aq) + 2Na 3 PO 4 (aq) Ca 3 (PO 4 ) 2 (s) + 6 NaCl(aq) Triebkraft: Ausfällen eines Feststoffes. Säure-Base- Reaktion Reaktion zwischen einer Säure und einer Base. z.B.:HCl(aq) + NaOH(aq) NaCl(aq) + H 2 O(l) Triebkraft: Bildung des Lösungsmittels (Wasser) Redox- reaktion Übertragung von Elektronen von einer Teilchenart auf eine andere (häufig begleitet von einer Übertragung der Atome). z.B.:2Mg(s) + O 2 (g) 2MgO(s) (Reduktion von O 2 ) Triebkraft: Grössere Stabilität durch Elektronenübertragung Typen chemischer Reaktionen
230
Die Bestimmung der stöchiometrischen Koeffizienten – Stöchiometrisches Rechnen Chemische Gleichungen & chemische Zusammensetzung (Formeln) der beteiligten Verbindungen: Berechnung der stöchiometrischen Koeffizienten der Produkte einer Reaktion Quantifizierung: wichtigste Grösse ist die Stoffmenge n Einheit Mol [mol]
231
Gleiche Stoffmengen verschiedener Stoffe: gleiche Anzahl von Teilchen. Stöchiometrisches Rechnen Chemische Reaktionsgleichung & stöchiometrische Koeffizienten: chemischer Ablauf primär auf molekularer (atomarer) Ebene wieder. +O 2 (g) 2 H 2 OReaktionsgleichung2 H 2 (g) Mol-Angabe2 mol H 2 1 mol O 2 2 mol H 2 O *= 44.8 L H 2 O-Dampf, da 2 mol H 2 O entstehen Volumen-Angabe 44.8 L H 2 22.4 L O 2 36 mL H 2 O* Massen-Angabe4g H 2 32 g O 2 36 g H 2 O Gleichungen: Stoffmengenäquivalent Massen- und Volumenangaben für jeden beteiligten Stoff
232
Wieviel Gramm bzw. Liter Wasserstoff (H 2 ) sind nötig, um 1g (=1 mL) Wasser herzustellen? Beispiel Stoffmenge des Wassers, n?:
233
Mit den gegebenen stöchiometrischen Koeffizienten ergibt sich 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Wieviel Gramm bzw. Liter Wasserstoff (H 2 ) sind nötig, um 1g (=1mL) Wasser herzustellen? Beispiel 2 2 g H 2 2 18g H 2 O 1.24 L H 2 0.11g H 2 1g H 2 O 2 mol H 2 2 mol H 2 O 22.4L (1mol = 22.4 L)
235
Stoffmengenkonzentration, c Molarität: Anzahl mol eines Stoffes pro Liter Einheit [mol/l] z.B. 20 g NaOH in 200 ml Wasser gelöst M NaOH = 40 g/mol; n = m NaOH /M NaOH = 20/40 mol = 0.5 mol c = 0.5/0.2 mol/L = 2.5 mol/L = 2.5 molar Es gilt: c, Konzentration, n = Stoffmenge in mol, V = Volumen in L
236
Volumen- und Massenprozent Beispiel: 40 % NaOH-Lösung 100 g Lösung enthalten 40 g NaOH (40/100) Massen %: z.B. 40 % Alkohollösung 100 ml Lösung enthalten 40 ml reinen Alkohol (40/100) Volumen %:
238
Ag (aq) + NO (aq) + Na (aq) + Cl (aq) AgCl(s) + Na (aq) + NO (aq) + + + - - - 33 Ionische Gesamtreaktion Reaktion ionische Gesamt- reaktion ionische Nettoreaktion Reaktionsgleichungen für Ionenreaktionen Weglassen der unbeteiligten Bei-Ionen: resultierende Reaktionsgleichung: nur wichtige Teil der Reaktion der Nettogleichung. AgCl(s)Ag (aq) + Cl (aq) + - Ionische Netto-Reaktion AgCl(s) -
242
Biologie (Körper) viele gekoppelte Gleichgewichte! "kleine Änderungen große Wirkung!!" [C]=K 2[B] [A]=[B]/K 1
245
H > 0 endotherm H: Reaktionsenthalpie (Reaktionswärme) H < 0 exotherm
246
Exotherm: Knallgasreaktion vgl. Hindenburg-Luftschiff 2 H 2 + O 2 2 H 2 O (exotherm H <0)
247
-110.5+ (-283.0)=-393.5 kJ/mol
250
Chemieübungen Vor der Klausur im Januar 2009: Ort: MLK Platz 6 Zeit: 18.00-20.00 Uhr Aufgaben im Netz Genaue Termine werden noch bekannt gegeben.
251
spontan! G = H - T S T: Temperatur S: Entropie nicht spontan! file://localhost/C:/Media_Portfolio/SpontaneousFallingEggs/NewSpontaneousClayBall.html exergon endergon
253
n A + m B t C + u D Chemisches Gleichgewicht Massenwirkungsgesetz
254
2 H 2 + O 2 2 H 2 O Gibt an ob mehr auf rechter linker Seite: K > 1 mehr auf Produktseite Chemisches Gleichgewicht Beispiel: für obige Reaktion auf Seite der Produkte K >>1
255
Gleichgewicht
259
"Bioenergetik" 1g Wasser 1°C Erwärmen: benötigt 1 cal 100 kg Wasser, 2.5 °C Erwärmen: 250 kcal
264
k hin k rück
268
[B] 0 50% 75% 87.5%
278
Ionengleichgewichte in wässriger Lösung - Lösungen sind homogene Gemische - Lösungsmittel (Solvens) ist die Komponente mit dem größten Mengenanteil - gelöste Stoffe sind die übrigen Komponenten Konzentration, c : Stoffmengen der gelösten Stoffe im Verhältnis zur Menge des Lösungmittels c = n / V n Mol des gelösten Stoffes, V = Gesamtvolumen der Lösung Lösungen Gelöste Stoffe, die den elektrischen Strom leiten: Elektrolyte (Gegenteil: Nichtelektrolyte)
279
KonzentrationsmassEinheitenDefinition molare Konzentration (Molarität) Mol pro Liter, mol L -1 Stoffmenge der gelösten Substanz in 1 Liter Lösung Volumenprozente Volumen einer Komponente in Prozenten des Gesamtvolumens ppm (parts per million), bezogen auf das Volumen Volumen einer Komponente in Millilitern pro 10 3 L Probe Massenprozente Masse einer Komponente in Prozent der Gesamtmasse ppm (parts per million), bezogen auf die Masse Masse eines gelösten Stoffes in Milligramm pro Kilogramm Lösung Stoffmengenanteil (x) Stoffmenge, geteilt durch die Stoff- mengen der gelösten Substanz und des Lösungsmittels: xA + xB +... = 1 Molalität Mol pro Kilogramm, mol kg -1 Stoffmenge der gelösten Substanz pro Kilogramm Lösungsmittel
280
Lösungen von Elektrolyten Ionen erhalten beim Lösungsvorgang eine Hülle von Wassermolekülen (Hydrathülle) Kräfte: - Ion-Dipol-Wechselwirkungen, - Wasserstoffbrückenbindungen Viele polare und ionische Stoffe lösen sich im Wasser unter Bildung beweglicher Ionen (Elektrolyte) Lösungsvorgang als Reaktionsgleichung: NaCl(s)Na + (aq) + Cl - (aq) HCl(g) H 3 O + (aq) + Cl - (aq)
281
Schematisierter Lösungsvorgang eines Elektrolyten in Wasser
283
Hydratisierte Ionen Ionen haben mehrere Sphären von Wassermolekülen Erste Sphäre meist 6 Wassermoleküle Ionenradius der ”nackten“ Alkali-Ionen nimmt mit steigender Ordnungszahl zu hydratisierte Ionen: gegenläufiges Verhalten Anlagerung in der zweiten Sphäre: schwächer variiert mit Grösse & Ladung des Ions (Ionenpotential = Ladung/Radius) und der Temperatur Ausbildung der Hydrathülle: Vergrößerung des Radius der Teilchen
284
Hydratisierte Ionen Teilchenradius: Li + < Na + < K + ; Li + 60-508 Na + 95-398 K+K+ 133-314 Mg 2+ 65-1908 Ca 2+ 97-1577 IonRadius (pm) H H (kJ/mol) Cl - 181 -376 Ionenradius und Hydratationsenergie ( H H ) einiger Ionen Li + (aq) > Na + (aq) > K + (aq)!
285
gesättigte Lösung Bodenkörper AB(s) A (aq)B (aq) + + Löslichkeit und gesättigte Lösung AB(s) A + (aq) + B - (aq) c A + = c B - = Sättigungskonzentration (Einwaage) c’ A +, c’ B - reale Konzentration (Lsg.) Löslichkeit = Konzentration eines Stoffes der gesättigten Lösung c’ A + = c’ B - << c A + = c B - verdünnte Lsg. c’ A + = c’ B - c A + = c B - konzentrierte Lsg. c’ A + = c’ B - > c A + = c B - übersättigte Lsg.
286
Löslichkeit und gesättigte Lösung Gesättigte Lösung = dynamisches Gleichgewicht von gelöster Substanz mit ungelöster Substanz Die Löslichkeit eines Stoffes hängt ab von: 1. Temperatur 2. Druck 3. Lösungsmittel Qualitatives Prinzip: Ähnliches löst Ähnliches
287
Löslichkeitsgleichgewicht und Löslichkeitsprodukt Beispiel: AgCl(s) Ag + (aq) + Cl – (aq)
288
Löslichkeitsgleichgewicht und Löslichkeitsprodukt Beispiel: AgCl(s) Ag + (aq) + Cl – (aq) Ionenprodukt < L Lösung verdünnt Ionenprodukt = L Lösung gesättigt Ionenprodukt > L Lösung übersättigt Löslichkeitsprodukt
289
Das Ionenprodukt Achtung! Manchmal ist das Ionenprodukt scheinbar > L BaCO 3 (s) Ba 2+ (aq) + CO 3 2- (aq) Ba 2+ (aq) + HCO 3 - (aq) + OH - Gleichionige Zusätze PbCl 2 Pb 2+ + 2 Cl - L PbCl 2 = [Pb 2+ ] [Cl - ] 2 Al(OH) 3 Al 3+ + 3 OH L Al(OH) 3 = [Al 3+ ] [OH - ] 3 Ba 3 (PO 4 ) 2 3 Ba 2+ + 2 PO 4 3- L Ba 3 (PO 4 ) 2 = [Ba 2+ ] 3 [PO 4 3- ] 2 Starke Beeinflussbarkeit aller Gleichgewichtskonzentrationen durch gleichionige Zusätze
290
Beispiel BaSO 4 Ba 2+ (aq) + SO 4 2- (aq) schwer löslich (MWG) = L BaSO 4
291
L BaSO 4 = 10 -10 mol 2. l -2 Gesättigte Lsg: Konz. in Lösung: [Ba 2+ ] = [SO 4 2- ] = gleichioniger Zusatz: hier SO 4 2- z.B. als Na 2 SO 4 (gut wasserlöslich) 1.4 mg/l [Ba 2+ ] Zugabe von 0.1 mol Na 2 SO 4 -Lsg.[SO 4 2- ] = 10 -1 mol/l 10 -1. [Ba 2+ ] = 10 -10 mol 2. l -2 [Ba 2+ ] = 10 -9 mol/l 0.14 g/l [Ba 2+ ] Computertomograph (Röntgen)
292
Löslichkeitsprodukte Beispiel Hydroxide Ba(OH) 2 5.0 10 -3 mol 3 L -3 Sr(OH) 2 3.2 10 -4 mol 3 L -3 Ca(OH) 2 1.3 10 -6 mol 3 L -3 AgOH2.0 10 -8 mol 2 L -2 Mg(OH) 2 8.9 10 -12 mol 3 L -3 Mn(OH) 2 2.0 10 -13 mol 3 L -3 Cd(OH) 2 2.0 10 -14 mol 3 L -3 Pb(OH) 2 4.2 10 -15 mol 3 L -3 Fe(OH) 2 1.8 10 -15 mol 3 L -3 Co(OH) 2 2.5 10 -16 mol 3 L -3 Ni(OH) 2 1.6 10 -16 mol 3 L -3 Zn(OH) 2 4.5 10 -17 mol 3 L -3 Cu(OH) 2 1.6 10 -19 mol 3 L -3 Hg(OH) 2 3.0 10 -26 mol 3 L -3 Sn(OH) 2 3.0 10 -27 mol 3 L -3 Cr(OH) 3 6.7 10 -31 mol 4 L -4 Al(OH) 3 5.0 10 -33 mol 4 L -4 Fe(OH) 3 6.0 10 -38 mol 4 L -4 Co(OH) 3 2.5 10 -43 mol 4 L -4 Absolute Werte können sehr klein sein! Bei Verschiedenheit der Einheiten: z.B. mol 3 /L 3 und mol 4 /L 4 Zahlenwerte nicht vergleichbar!
294
Karies (Zahnfäule) i) u.a. Bakterien bilden dichten Belag auf Zähnen = Plaque ii) Einbau von anorg. Stoffe in Plaque (Calciumphosphat aus Speichel) Mundhöhle: Unzahl von Mikroorganismen iii) weitere Bakterien siedeln sich auf Zahnbelag an insbesondere Streptococcus mutans Umwandlung: Zucker Milchsäure
295
Temperaturabhängigkeit der Löslichkeit Temperatur (°C) Lösungsvorgang exotherm ( H Sol < 0) Löslichkeit nimmt mit steigender Temperatur ab Beurteilung: Prinzip des kleinsten Zwanges (Le Chatelier). ”Übt man auf ein im Gleichgewicht befindliches System durch Änderung der äußeren Bedingungen einen Zwang aus, so verschiebt sich das Gleichgewicht derart, dass es dem äußeren Zwang ausweicht.“ Lösungsvorgang endotherm ( H Sol > 0) Löslichkeit nimmt mit steigender Temperatur zu Unstetigen Kurven liegen Veränderungen im Bodenkörper zugrunde: Phasenübergang: Bodenkörper I Bodenkörper II
296
Lösungsenthalpie Lösungsenthalpie = Gitterenthalpie + Hydratationsenthalpie H Sol H G > 0 H H < 0 H Sol > 0 wenn H G > | H H | H Sol < 0 wenn H G < | H H | Ionengas H G H H Lösung fest H Sol Ionengas H G H H Lösung fest H Sol
297
Beispiele für Lösungsenthalpie
298
Lösungen von Gasen in Flüssigkeiten Temperaturabhängigkeit der Löslichkeit: H Sol von Gasen < 0 Löslichkeit von Gasen nimmt mit steigender Temperatur ab. Druckabhängigkeit der Löslichkeit: c = Konzentration p = Partialdruck C = Konstante c = C × p Es gilt das Henry-Dalton'sche Gesetz (verdünnte Lösungen):
299
Löslichkeit verschiedener Gase in Wasser O N He 2 2 0 0.5 1.0 0 0.5 1.0 Druck [bar] bei höherem Druck löst sich mehr Löslichkeit [mmol/l]
300
pH-Abhängigkeit der Löslichkeit von Calciumphosphaten Ca 5 OH(PO 4 ) 3 = 5 Ca 2+ +3 PO 4 3- + OH - Lp =10 -55.6 mol 9 /L 9 basisch neutral Hydroxylapatit höhere Löslichkeit sauer Zahnschmelz = Hydroxylapatit Hydroxylapatit = Zahn löst sich im sauren auf! Löslichkeit: 30 mg/L
301
Karies (Zahnfäule) i) u.a. Bakterien bilden dichten Belag auf Zähnen = Plaque ii) Einbau von anorg. Stoffe in Plaque (Calciumphosphat aus Speichel) Mundhöhle: Unzahl von Mikroorganismen iii) weitere Bakterien siedeln sich auf Zahnbelag an insbesondere Streptococcus mutans Umwandlung: Zucker Milchsäure
302
Säuren-, Basengleichgewichte H 2 SO 4 2 H + + SO 4 2 - Arrhenius-Definition (1883) (nicht mehr im Gebrauch) Säuren sind Stoffe, die in wässriger Lösung H + -Ionen abgeben Säure:Eigentliche Reaktion : H + + OH - H 2 O H° = - 57.4 kJ/mol Säure+ Base Salz + Wasser H + + Cl - + Na + + OH - Na + + Cl - + H 2 O Neutralisation: Base: Ba(OH) 2 Ba 2+ + 2OH - Basen sind Stoffe, die in wässriger Lösung OH - -Ionen abgeben
303
Säuren - Basen - Theorie nach Brönstedt (1923) im Vakuum: HCl H + + Cl - Säure/Basen-Paar 1 Säure Proton konjugierte Base in Wasser: H + + H 2 O H 3 O + Säure/Basen-Paar 2 Proton konjug. Base Säure Base = Protonenakzeptor Säure = Protonendonator
304
Säuren - Basen - Theorie nach Brönstedt (1923) Gesamte Reaktion = Protolysereaktion (Protonenübertragungsreaktion) HCl + H 2 O H 3 O + + Cl - Säure 1konj. Base 1 Säure/Base-Paar 1 konj. Base 2 Säure 2 Säure/Base-Paar 2 Base = Protonenakzeptor Säure = Protonendonator
305
Protolysereaktion Allgemein: HA + H 2 O H 3 O + + A - Eine Protolysereaktion benötigt 2 Säure/Base-Paare, zwischen denen ein Gleichgewicht existiert. Beispiele: Wachsende Stärke der Säure H 2 SO 4 HCl HSO 4 - NH 4 + H 2 O HCO 3 - + H 2 O H3O+H3O+H3O+H3O+H3O+H3O+H3O+H3O+H3O+H3O+H3O+H3O+ + HSO 4 - + Cl - + SO 4 2- + NH 3 + OH - + CO 3 2- Wachsende Stärke der Base
306
- Brönstedt-Säuren/Basen sind nach Funktion definiert - Arrhenius-Säuren/Basen sind fixierte Stoffklassen (enthalten H + oder OH - ) Säuren und Basen
307
pH-Wert, Ionenprodukt des Wassers Definition: Der pH -Wert ist der negative dekadische Logarithmus des Zahlenwertes der H 3 O + -Konzentration pH = -log[H 3 O + ] ebenso: pOH = -log[OH - ]
308
pH-Wert, Ionenprodukt des Wassers Protolysengleichgewicht des Wassers (Autoprotolyse) H 2 O + H 2 O H 3 O + + OH - Massenwirkungsgesetz = K c [H 2 O] = 55.55 mol/L = konstant Ionenprodukt des Wassers [H 3 O + ]. [OH - ] = K c. [H 2 O] 2 = K w = 1.0×10 -14 mol 2 /L 2 pH + pOH = 14 [H 3 O + ] = [OH - ] = 10 -7 mol/L
309
[H 3 O + ]. [OH - ] = K c. [H 2 O] 2 = K w = 1.0×10 -14 mol 2 /L 2 pH + pOH = 14 [H 3 O + ] = [OH - ] = 10 -7 mol/L log( [H 3 O + ]. [OH - ] ) = log(10 -14 ) log( [H 3 O + ]. [OH - ] ) = -14 log( [H 3 O + ] ) + log( [OH - ] ) = -14 -log( [H 3 O + ] ) -log( [OH - ] ) = +14
311
pH-Wertskala
312
Und täglich grüßt die Chemie Peter Burger
313
Chemie http://www.chemie.uni-hamburg.de/studium/materialien /alg_chem_medi/video/index.html material / nitrogen
314
Säurestärke, pKs-Wert, pH-Wertberechnungen HA + H 2 O H 3 O + + A - HA = Säure 100 oder pK S < -2 starke Säure KSKS = K S schwache Säure Gleichgewicht liegt auf der undissoziierten Seite starke Säure Gleichgewicht liegt auf der dissoziierten Seite pK S = -log K S
316
pK S -Werte einiger Säure-Base-Paare bei 25°C 2- - - - - - - - - - - - - - - - - - - 3+ 2+ + + + +29 +15.74 +12.89 +12.32 +11.65 +10.33 + 9.25 + 9.21 + 8.96 + 7.21 + 7.2 + 6.99 + 6.74 + 6.35 + 4.97 + 4.75 + 3.18 + 2.46 + 2.16 + 1.90 + 1.96 - 1.37 - 1.74 - 3 - 7 -10 3- 2- 2+ 3+ - + ClO 4 I HSO 4 H 2 O NO 3 SO 4 HSO 3 H 2 PO 4 [Fe(OH)(H 2 O) 5 ] F CH 3 COO [Al(OH)(H 2 O) 5 ] HCO 3 [Fe(OH)(H 2 O) 5 ] HS SO 3 HPO 4 [Zn(OH)(H 2 O) 5 ] CN NH 3 CO 3 HO 2 PO 4 S OH O HClO 4 HI H 2 SO 4 H 3 O HNO 3 HSO 4 H 2 SO 3 H 3 PO 4 [Fe(H 2 O) 6 ] HF CH 3 COOH [Al(H 2 O) 6 ] CO 2 + H 2 O [Fe(H 2 O) 6 ] H 2 S HSO 3 H 2 PO 4 [Zn(H 2 O) 6 ] HCN NH 4 HCO 3 H 2 O 2 HPO 4 HS H 2 O OH pK s BaseSäure Basenstärke nimmt zu Säurestärke nimmt zu
317
pH-Wertberechnungen Starke Säure pH = -log[Säure] [Säure] = Totalkonzentration an Säure da Säure vollständig dissoziiert ! [CH 3 COOH] ges = Totalkonzentration an Essigsäure (Einwaage) und [CH 3 COOH] = [CH 3 COOH] ges - [H 3 O + ] [H 3 O + ] = [CH 3 COO - ] Stöchiometrie (Reaktionsgleichung)! Schwache Säure Beispiel Essigsäure: CH 3 COOH + H 2 O H 3 O + + CH 3 COO - Ks =Ks =
318
pH-Wertberechnungen [H 3 O + ] 2 + K S H 3 O + ] - K S CH 3 COOH] ges = 0 Exakte Lösung: Quadratische Gleichung: x 2 + px + q = 0 Ks =Ks =
319
Mit [H 3 O + ] << CH 3 COOH] ges da nur schwach dissoziiert pH = 1/2 (pK s - log CH 3 COOH] ges ) folgt mit: K s = Allgemein gilt für schwache Säuren: pH = 1/2 (pK s - log [Säure] ges ) mit [Säure] ges = Einwaage an Säure Näherungslösung:
320
1 2.37 10 -1 2.88 2.87 10 -2 3.38 3.37 10 -3 3.90 3.87 10 -4 4.46 4.37 c Essigsäure [mol/L] pH (exakt)pH (Näherung) 10 -5 5.15 4.87 pH-Wertberechnungen
321
Mehrprotonige Säuren
322
Beispiel H 3 PO 4 H 3 PO 4 H + + H 2 PO 4 - = K S1 = 7.5×10 -3 mol/L Mehrprotonige Säuren K S1 > K S2 > K S3 [H 2 PO 4 - ] > [HPO 4 2- ] > [PO 4 3- ] K S (gesamt) = = K S1. K S2. K S3 Protonen werden mit jedem weiteren Dissoziationsschritt zunehmend schwerer abgespalten H 2 PO 4 - H + + HPO 4 2- = K S2 = 6.2×10 -8 mol/L HPO 4 2- H + + PO 4 3- = K S3 = 1×10 -12 mol/L
323
pH-Wertberechnungen von Basen Basenprotolysegleichgewicht A - + H 2 O HA + OH - = K B pK B = -log K B K B = Basenkonstante
324
pH-Wertberechnungen von Basen Protolysegleichgewicht der konjugierten Säure HA + H 2 O H 3 O + + A - = K S pK S = -log K S K S. K B = pK W = pK s + pK B = 14 K B = = [H 3 O + ]. [OH - ] = K w = K B pK B = -log K B K B = Basenkonstante
325
Beispiel: Natriumacetat, CH 3 COONa CH 3 COO - + H 2 O CH 3 COOH + OH - K B = [OH - ] = [CH 3 COOH] folgt: mit [OH - ] 2 = K B [CH 3 COO - ] K B = pH-Wertberechnungen von Basen
326
Näherungsweise gilt: [CH 3 COO - ] [CH 3 COO - ] ges (Einwaage) [OH - ] 2 = K B [CH 3 COO - ] ges [OH - ] = pOH = - log [OH] = log = 1/2(log K B +log[CH 3 COO - ] ges ) pOH = pK B - log[CH 3 COO - ] ges pH = 14 - 1/2 pK B + 1/2 log[CH 3 COO - ] ges pH + pOH = 14 pH-Wertberechnungen von Basen
327
pH-Titrationen, Indikatoren Titration 50 ml einer 0.1 mol/L Salpetersäure mit 0.1 mol/L KOH-Lsg. starke Säure & Base! Titration ist eine Massanalyse HNO 3 + KOH KNO 3 + H 2 O Nettoreaktion: H + + OH - H 2 O
328
Titration einer schwachen Säure mit einer starken Base CH 3 COOH + OH - CH 3 COO - + H 2 O Essigsäure titriert mit NaOH 3) Am Äquivalenzpunkt (reine CH 3 COONa-Lösung): pOH = 1/2 (pK B - log [CH 3 COONa] 4) Nach Äquivalenzpunkt: pH-Wert bestimmt durch überschüssige NaOH: der Verlauf der Kurve entspricht der Titration einer starken Säure mit einer starken Base 2) Ausgezeichneter Punkt: pH = pK S bei ”Halbtitration“ [CH 3 COOH] Vor Äquivalenzpunkt:= [CH 3 COO - ] K S = pH = pK S - log 1) Vor Äquivalenzpunkt:
329
pH = pK S Titration schwache Säure mit starker Base Titrationskurve für die Titration von 50.0 ml Essigsäure (0.1 mol/L) mit NaOH (0.1 mol/L)
330
Säure-Base-Indikatoren Säure-Base-Indikatoren: organische Farbstoffe und zugleich schwache Säuren oder Base verschiedene Farben der Säure/konjugierter Base. vollständiger Farbumschlag bestimmter pH-Bereich: Säure-Base-Indikator = Säure/Base-Paar HInd + H 2 O H 3 O + + Ind - K S (HInd) = pH = pKs(HInd) + log Umschlagbereich: pH = pKs ± 1 Bei = 10 Farbe von Ind - dominierend Bei = 0.1 Farbe von HInd dominierend
331
saurer Bereich basischer Bereich Thymolblau Methylorange Methylrot KongorotLackmus Phenolph- thalein Thymolblau 1.2-2.8rot gelb Methylorange3.1-4.4rot gelb-orange Kongorot3.0-5.2blau rot Methylrot4.4-6.2rot gelb Lackmus5.0-8.0rot blau Phenolphthalein8.0-9.3 farblos rot-violett IndikatorUmschlag- bereich pH Farbe der Indikatorsäure Farbe der Indikatorbase Thymolblau 8.0-9.6 gelb blau Indikatoren
332
Pufferlösungen Pufferlösungen: Lösungen aus einer schwachen Säure (Base) und der konjugierten schwachen Base (Säure), HA + H 2 O H 3 O + + A - K S = [H 3 O + ] = K S. - Größte Pufferwirkung liegt bei pH = pK S vor: [A – ] = [HA] pH = pK S + log Henderson-Hasselbalch-Gleichung nur geringe pH-Wertänderung auch bei großer Zugabe relativ großer Mengen Säure oder Base - Je konzentrierter die Pufferlösung, desto größer die Pufferkapazität
333
Pufferlösungen Zufügen von 0.1 mol HCl (aq): pH = 4.76 + log = 4.76 + log = 4.66 Beispiel: 1 mol/L CH 3 COOH + 1 mol/L CH 3 COO - pH = pK S = 4.76
334
Pufferlösungen Zufügen von 0.2 mol HCl (aq): pH = 4.76 + log = 4.76 + log = 4.28 Beispiel: 1 mol/L CH 3 COOH + 0,6 mol/L CH 3 COO - pH = 4.53
336
1.Die Oxidationszahl eines Atoms im elementaren Zustand ist null 2. In Ionenverbindungen ist die Oxidationszahl eines Elementes identisch mit der Ionenladung Elektrochemische Gleichgewichte Redoxreaktionen, Oxidationszahl, Oxidation und Reduktion Regeln zur Ermittlung der Oxidationszahl. Formalismus! Gebrochene Oxidationszahlen: Atome eines Elements in verschiedenen Oxidationszahlen
337
3. Kovalente Verbindungen Aufteilung in Ionen: Oxidationszahl identisch mit der erhaltenen Ionenladung HCl H +, Cl - H2OH2O 2H +, O 2- H2O2H2O2 2H +, 2O - SF 6 6F -, S 6+ HNO 3 H +, N 5+, 3O 2- Verbin- dung Lewisformel fiktive Ionen Oxidations- zahlen K 2 SO 4 2K +, S 6+, 4O 2- Bindungselektronen Zuteilung elektronegativerer Partner gleiche Bindungspartner beide Hälfte der Bindungselektronen.
338
- Die positive Oxidationszahl eines Elements kann nicht größer sein als seine Gruppennummer Oxidationszahlen - Der Oxidationszahlenbereich eines Elements kann maximal 8 Einheiten betragen -Die maximale negative Oxidationszahl beträgt -8 -Fluor besitzt nie eine positive Oxidationszahl
339
Oxidationszahlen der Elemente der ersten drei Perioden des PSE
340
Oxidation und Reduktion Ursprüngliche Definition: Oxidation = Reaktion mit Sauerstoff 2Mg + O 2 2MgO Reduktion = Entfernung von gebundenem Sauerstoff CuO + H 2 Cu + H 2 O zu starke Einschränkung
341
Redoxreaktionen sind Gleichgewichtsreaktionen Allgemein: reduzierte Form oxidierte Form + ze - Redoxpaar = oxidierte Form / reduzierte Form Chemische Reaktionen: Kopplung von 2 Redoxpaaren Elektronen können nicht frei auftreten Reduktion Oxidation Reduktion Oxidation
342
Oxidation und Reduktion Heutige Definition: Beispiele: Oxidation = Elektronenabgabe, Oxidationszahl wird erhöht Reduktion = Elektronenaufnahme, Oxidationszahl wird erniedrigt Beispiele:
343
2 Na 2 Na + + 2e - Redoxpaar 1 Cl 2 + 2e - 2 Cl - Redoxpaar 2 Red 1 + Ox 2 Ox 1 + Red 2 Redoxreaktion Allgemein: Red 1 Ox 1 + e - Redoxpaar 1 Ox 2 + e - Red 2 Redoxpaar 2 Redoxreaktionen Redoxreaktion
344
Reihung der Redoxpaare Oxidierte Form + Elektronen Reduzierte Form Zunehmende Tendenz der Elektronen- aufnahme; zunehmende oxidierende Wirkung Zunehmende Tendenz der Elektronen- abgabe; zunehmende reduzierende Wirkung Freiwillig laufen nur Redoxprozesse einer reduzierten Form mit einer in der Redoxreihe darunter stehenden oxidierten Form ab Redoxtendenzen Na + Zn 2+ Fe 2+ I 2 Cu 2+ Fe 3+ Br 2 Cl 2 + e - + 2e - + e - + 2e - Na Zn Fe 2I - Cu + Fe 2+ 2Br - 2Cl - Oxidationsmittel Reduktionsmittel
345
Redoxgleichungen Beispiel: Auflösung von Cu in Salpetersäure: Cu + H 3 O + + NO 3 - Cu 2+ + NO NO = Gift Relaxation der glatten Gefäßmuskulatur Vasodilatation Blutgefäßerweiterung, Erweiterung der Blutgefäße erhöhtes Blutvolumen Angina PectorisNitroglycerin & Neurotransmitter
346
Redoxgleichungen 1. Auffinden der Redoxsysteme: Redoxsystem 1:CuCu 2+ Redoxsystem 2:NO 3 - NO 2. Bestimmen der Oxidationszahlen: Lösungsschema: Beispiel: Auflösung von Cu in Salpetersäure: Cu + H 3 O + + NO 3 - Cu 2+ + NO
347
Die Differenz der Oxidationszahlen entspricht der Anzahl der auftretenden Elektronen: + 2e - 3e - + Redoxgleichungen Ladungsausgleich: in saurer Lösung durch H 3 O + in basischer Lösung durch OH - 4 H 3 O + + NO 3 - + 3e - NO 3. Elektroneutralität: Ladung links und rechts der Reaktionsgleichung identisch!
348
4. Stoffbilanz: Ausgleich durch H 2 O Redoxgleichungen 4 H 3 O + + NO 3 - + 3e - NO 12 H, 1 N, 7 O1 N, 1 O: 12 H, 6 O = 6 H 2 O + 6 H 2 O 3 Cu + 8 H 3 O + + 2 NO 3 - + 6e - 3 Cu 2+ + 2 NO + 12H 2 O + 6e - 5. Redoxgleichung = Kombination der Redoxsysteme: ·3·3 ·2·2 3 Cu + 8 H 3 O + + 2 NO 3 - 3 Cu 2+ + 2 NO + 12 H 2 O Cu Cu 2+ + 2e - 4 H 3 O + + NO 3 - + 3e - NO + 6 H 2 O
349
Gleichstromquelle KathodeAnode Elektrolyse von geschmolzenem Natriumchlorid Gesamtvorgang: 2NaCl 2Na(l) + Cl 2 (g) Stromfluss durch Elektrolyte und Elektrolyse Stromfluss in einer Schmelze Konventionen zu Elektrodenprozessen
350
Galvanische Zelle (galvanisches Element) Auflösung von metallischem Magnesium in wässriger Salzsäure Oxidation: Mg(s) Mg 2+ (aq) + 2e - Reduktion:2e - + 2 H 3 O + (aq)H 2 (g) + 2H 2 O(l) Mg(s) + 2H 3 O + (aq) H 2 (g) + Mg 2+ (aq) + 2H 2 O(l) Trennung der Halbreaktionen in der galvanischen Zelle Leitungs- Mg- Band H2H2 HCl- Lösung e-e- Anode: Oxidation Kathode: Reduktion draht Platin- draht MgCl 2 -Lösung Salzbrücke Ionen -+
351
Voltmeter poröse Trennwand Kathode 2e - + Cu 2+ (aq) Cu(s) Anode Zn(s) Zn 2+ (aq) + 2e - Galvanische Zelle ”Daniell-Element“ Halbreaktion: Zn(s) Zn 2+ (aq) + 2 e - Halbreaktion: 2e - + Cu 2+ (aq) Cu(s) Das elektrische Potential E° einer galvanischen Zelle nennt man elektromotorische Kraft = EMK [Volt] Gesamtreaktion: Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) GoGo
352
Zellpotential unter Standardbedingungen - Jede Halbzelle besitzt ein Halbzellenpotential oder unter Standardbedingungen, welche in der Summe die Standard-EMK E° ergeben. - Die Halbzellenpotentiale werden auf die Standard-Wasserstoff- elektrode als Referenz (H 2 -Gasdruck von 101.3 kPa) bezogen, wobei der Wasserstoff eine Platinelektrode umspült ([H 3 O + ] = 1 mol/l pH=0) - Die Standard-EMK E° bezieht sich auf die EMK einer Zelle, in der alle Reaktanden in Standardzuständen vorliegen (25°C, 1 M Lösun- gen). Der Standardzustand von Feststoffen ist der reine Feststoff. E°(H 2 | H 3 O + ) = 0 V Das Halbzellenpotential der Standard-Wasserstoffelektrode ist:
353
Die Standard-Wasserstoffelektrode Salzbrücke H KCl -+ 2 e e - - + Galvanisches Element aus einer Standard-Wasserstoff- elektrode und einer Cu 2+ | Cu-Elektrode Anode Kathode H 2 (g) 2H + + 2e - 2e - + Cu 2+ Cu(s) H+H+
354
Elektrochemische Spannungsreihe Halbreaktion E°/V e-e- + Li + Li-3.045 e-e- + K + K-2.925 2e - + Ba 2+ Ba-2.906 2e - + Ca 2+ Ca-2.866 e-e- + Na + Na-2.714 2e - + Mg 2+ Mg-2.363 3e - + Al 3+ Al-1.662 2e - + 2H 2 OH 2 + 2OH - -0.828 Je negativer das Standardpotential, desto stärker reduzierend Je positiver das Standardpotential, desto stärker oxidierend
355
2e-+ Zn 2+ Zn-0.7628 2e - + Cr 2+ Cr-0.744 2e - + Fe 2+ Fe-0.4402 2e - + Cd 2+ Cd-0.4029 2e - + Ni 2+ Ni-0.250 2e - + Sn 2+ Sn-0.136 2e - + Pb 2+ Pb-0.126 2e - + 2H + H2H2 0 2e - + Cu 2+ Cu+0.337 e-e- + Cu + Cu+0.521 Die Oxidationsprozesse (Anode) erhalten den Wert -E°. Cu Cu + + e - -0.521 V Beachte! Vorzeichen der Standardpotentiale (Standardreduktions- potentiale) beziehen sich immer auf die Reduktionsprozesse (Kathode). auch so tabelliert!!
356
Kathode: 2e - + Cu 2+ (aq) Cu(s)E° = + 0.34V Anode: Zn(s) Zn 2+ (aq) + 2 e - E° = + 0.76V (-(-0.76) Berechnung der EMK Gesamtreaktion:Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) EMK = E° = E°(Kathode) + (E°(Anode)) = 1.10V
357
Mit Hilfe der Standardpotentiale kann entschieden werden, ob eine Redoxreaktion zwischen gegebenen Substanzen ablaufen wird Ox n+ 1 + ne - Red 1 Ox n+ 2 + ne - Red 2 Freiwillig reagieren nur Stoffe ”rechts oben“ mit ”links unten“ Redoxreaktionen z.B. Li mit Cu +
358
G = -n. F. E Beziehung zwischen G und E n: Anzahl transferierter Elektronen Cu 2+ |Cu||Zn|Zn 2+ n = 2 F: Faraday Konstante Ladung von 1 mol e - => N A. e - = 6.203. 10 23. 1.602. 10 –19 C/mol = 96500 C/mol G = G 0 + RT ln K = -n. F. E E = - G 0 /n. F - (RT/ n. F). lnK E = 0 - (RT/ n. F). lnK {
359
Nernst'sche Gleichung (Konzentrationsabhängigkeit der Standardpotentiale) Q = Konzentrationsquotient (vgl. Gleichgewichtskonstante K) Q = E = E° - log Q [V] RT/F ln = 0.059 log (298K)
360
E = E° - log Q [V] RT/F ln = 0.059 log (298K) pH-abhängige Redoxreaktionen (wenn [H 3 O + ] oder [OH - ] in der Halbgleichung auftritt) + 8 H 3 O + + 5e - Mn 2+ + 12 H 2 O H 2 O 2 + 2e - 2 OH - z.B. E = E° -
361
Reaktionen von Metallen mit Säuren und Wasser In starker Säure (1mol/L) ist E = E° H + log 0 Metalle oberhalb 2H + | H 2 in der Spannungsreihe reagieren freiwillig unter Auflösung: ”unedle“ Metalle Metalle unterhalb 2H + | H 2 in der Spannungsreihe zeigen keine Reaktion: ”edle“ Metalle Reaktionen mit H 2 O: [H 3 O + ] = 10 -7 mol/L (p H2 = 1 bar) E H = 0 + 0.0295 log 10 -14 = - 0.42V Metalle reagieren mit H 2 O, wenn ihr Potential negativer als -0.42 V ist
362
Einige Metalle ”gehorchen“ bei Reaktionen mit H 2 O nicht der Spannungsreihe Grund: Passivierung der Metalloberfläche z.B. Al 2 O 3 Reaktionen von Metallen mit Säuren und Wasser
363
Elektrolyse Elektrolyse Umkehrung des galvanischen Elementes. Zuführung elektrischer Arbeit (nicht freiwillig)
364
Elektrolyse Elektrolyse Umkehrung des galvanischen Elementes. Zuführung elektrischer Arbeit (nicht freiwillig)
365
ZnSO 4 - Lösung Batterie Stromfluss Anode, Cu Kathode, Zn Poröse Trennwand (Diaphragma) CuSO 4 - Lösung Elektrolyse Kathode: Zn 2+ + 2e - Zn E° = -0.76 V Anode:Cu Cu 2+ + 2e - E° = -0.34 V Gesamtreaktion: Zn 2+ + Cu Zn + Cu 2+ E° = -1.10 V Zersetzungsspannung (= -EMK (galv. Zelle)) In wieder aufladbaren Batterien (Akkumulatoren) entspricht die Batteriefunktion dem galvanischen Element und der Aufladeprozess der Elektrolyse
366
Und täglich grüßt die Chemie Peter Burger
367
Chemie http://www.chemie.uni-hamburg.de/studium/materialien /alg_chem_medi/video/index.html material / nitrogen
368
Vielen Dank für das zahlreiche Erscheinen & Aufmerksamkeit! Viel Erfolg bei der Klausur!
369
Koordinationsverbindungen = Komplexe Was ist ein Komplex? Komplex = Koordinationszentrum + Ligandhülle gelb Häufige typische Eigenschaften: starke Färbung Redoxeigenschaften Ionenreaktionen 3- rot 3- + e-- e- Koordinationszentrum = Metallatom, -ion Ligand = Ion oder Molekül Koordinationszahl = Anzahl der Liganden
370
Bindungsverhältnisse - Koordinative Bindung Koordinative Bindung = kovalente Bindung mit Formalladungen - I.d.R. Bindung mit Partialladungen polare kovalente Bindung - Zusammenhalt: Atombindung und elektrostatischer Anziehung - Besonderheit: beide Bindungselektronen von einem Partner
371
Koordinative Bindung Bezeichnungsweise: Bei manchen Teilchen ist die koordinative Bindung von der Atombindung nicht zu unterscheiden H + + |NH 3 NH 4 + H + + H 2 O H 3 O + Ammonium-Ion Hydronium-Ion
372
Koordinative Bindung in Metallkomplexen - in Komplexen Liganden = Lewis-Basen - Metallzentren = Lewis-Säure koordinative Bindungen zwischen Liganden und Metallzentrum L = Ligand, Me = Metall - Moleküle mit Elektronenpaarlücken = Elektronenpaarakzeptoren = Lewis-Säuren - Moleküle mit freien Elektronenpaaren = Elektronenpaardonatoren = Lewis-Basen
373
Koordinative Bindung in Komplexen Beispiele: Bitte beachten: In Komplexen wird die koordinative Bindung bevorzugt mit Pfeilen dargestellt, da in den alter- nativen Valenzstrich- formeln hohe Formal- ladungen am Metallzen- trum auftreten würden, die nicht sinnvoll sind
374
Koordinationszahlen
375
Typische Liganden F - FluoroCN - Cyano (M-CN)H 2 O Aqua Cl - ChloroCN - Isocyano (M-NC)NH 3 Ammin Br - BromoSCN - Thiocyanato (M- SCN) NO Nitrosyl I - IodoSCN - Isothiocyanato (M- NCS) CO Carbonyl OH - HydroxoNO 2 - Nitrito (M-ONO) Carbonato O 2- OxoNO 2 - Nitro (M-NO 2 ) Sulfato Das gebundene Atom nennt man Donoratom oder Koordinationsstelle
376
Elektronenabzählung von Komplexen und Hybridisierung
378
Bildung von Übergangsmetall-Komplexen -Bildung in der Regel werden durch Liganden-Austauschreaktionen - in wässriger Lösung => Aqua-Komplexe der Übergangsmetall-Ionen Aqua-Komplexe: [Co(H 2 O) 6 ] 2+ [Cu(H 2 O) 6 ] 2+ [Fe(H 2 O) 6 ] 3+ Austauschreaktion:[M(H 2 O) x ] n+ + xL[M(L) x ] n+ + xH 2 O Es werden notwendigerweise nicht alle H 2 O-Liganden ausgetauscht! [Fe(H 2 O) 6 ] 2+ + 6CN - [Fe(CN) 6 ] 4- + 6H 2 O gelbes Blutlaugensalz [Fe(H 2 O) 6 ] 3+ + 6CN - [Fe(CN) 6 ] 3- + 6H 2 O rotes Blutlaugensalz [Cu(H 2 O) 6 ] 2+ + 4NH 3 [Cu(NH 3 ) 4 ] 2+ + 6H 2 O blassblautiefblau [Fe(H 2 O) 6 ] 3+ + 2SCN - [Fe(H 2 O) 4 (SCN) 2 ] + + 2H 2 O blassviolett blutrot
379
- Komplexe, deren Bildung von einer negativen Enthalpie G < 0 begleitet ist, nennt man stabil (Gegenteil instabil) Bildung von Übergangsmetall-Komplexen - Bei vielen Metallionen der Übergangsmetalle ist die Verstärkung des Anteils an koordinativer Bindung im Komplex mit einer auffälligen Farbänderung verbunden - Komplexe, deren Bildung einen positiven Enthalpiewert besitzt, welche aber dennoch nur aufgrund einer hohen Aktivierungsenergie für den Ligandaustausch existent sind, nennt man inert (Gegenteil labil )
380
Koordinationsgeometrie und Isomerie von Komplexen Isomere sind Moleküle gleicher Atomzusammensetzung mit unterschiedlichem Bau, d.h. unterschiedlicher Verknüpfung der Atome Bindungsisomerie tritt bei Liganden mit verschiedenen Donoratomen (Koordinationsstellen) auf L n M NO 2 ; L n M ONO L n M CN; L n M NC Nitro Nitrito Cyano Isocyano L n M SCN; L n M NCS ThiocyanatoIsothiocyanato Wie alle Isomere sind auch Bindungsisomere physikalisch und chemisch unterscheidbare Verbindungen z.B. [Co(NH 3 ) 5 (NO 2 )]Cl 2 gelb [Co(NH 3 ) 5 (ONO)]Cl 2 rot
381
Stereoisomere haben die gleiche Verknüpfung der Atome, jedoch unterschiedlichen räumlichen Bau Stellungsisomere (geometrische Isomere) sind Stereoisomere, die sich in der Anordnung der Liganden um das Metallzentrum unterscheiden Enantiomere verhalten sich wie Bild und Spiegelbild Koordinationsgeometrie & Isomerie von Komplexen
382
Stereoisomere Beispiele [PtCl 2 (NH 3 ) 2 ] und [CoCl 2 (NH 3 ) 4 ] + + quadratisch-planar oktaedrisch aa) cis trans
383
Stellungsisomerie und Enantiomerie Beispiel [CoCl 2 (en) 2 ] + trans Beispiel [Co(en) 3 ] 3+ cis Enantiomere, optische Isomerie Racemat: homogenes 1:1 Gemisch der Bild- und Spiegelbildmoleküle
384
Komplexbildungsgleichgewichte - Komplexe Die Bildung und der Zerfall eines Komplexes verläuft stufenweise: [Ag(NH 3 ) 2 ] + NH 3 + Ag(NH 3 ) + Ag + + NH 3 K D1 K D2 = K D1 = 1.4 10 -4 mol/L = K D2 = 4.3 10 -4 mol/L K D1 > K D2
385
Komplexbildungsgleichgewichte Summengleichung: [Ag(NH 3 ) 2 ] + Ag + + 2 NH 3 = K D1. K D2 = K D = 1.4. 10 -4. 4.3×10 -4 mol 2 /L 2 = 6.0. 10 -8 mol 2 /L = K D1, K D2 = Komplexzerfallskonstanten, -dissoziationskonstante K K = 1/K D = Komplexbildungskonstante, -stabilitätskonstante
386
Beeinflussung von Löslichkeitsgleichgewichten durch Komplexbildungsgleichgewichte Beispiel Wie groß ist die Löslichkeit von AgCl in einer 0.10 molaren Ammoniaklösung? AgCl(s)Ag + (aq) + Cl - (aq)[Ag + ]. [Cl - ] = L Ag + (aq) + 2 NH 3 (aq)[Ag(NH 3 ) 2 ] + (aq) = K K AgCl(s) + 2 NH 3 (aq)[Ag(NH 3 ) 2 ] + (aq) + Cl - (aq) = K K L
387
Beeinflussung von Löslichkeitsgleichgewichten durch Komplexbildungsgleichgewichte [NH 3 ] = 0.10 mol/L - 2 [Cl - ] [Ag(NH 3 ) 2 + ] = [Cl - ] = K K ×L = 1.67×10 7. 1.7×10 -10 = (5.3×10 -2 ) 2 mol/L = 5.3×10 -2 ; [Cl - ] = 4.8. 10 -3 mol/L Es gehen somit 4.8. 10 -3 mol/L AgCl in Lösung In reinem Wasser lösen sich nur 1.3. 10 -5 mol/L
388
Warum Chemie? Warum Ich? Viel Erfolg!
390
Chelatliganden Chelatliganden besitzen mehrere Donoratome im Molekül Zweizähnige Liganden: CarbonatoOxalatoEthylendiamin = en, Diaminoethan Mehrzähnige Liganden mit Bindestellen n > 2: Ethylendiamintetraacetat(o) = EDTA = Y 4- (Säure = H 4 Y) [Ca(EDTA)] 2-
391
Chelateffekt Chelatkomplexe haben im Vergleich zu Komplexen mit einzähnigen Liganden eine größere Bildungskonstante und sind damit stabiler! [Ni(H 2 O) 6 ] 2+ + 6NH 3 [Ni(NH 3 ) 6 ] 2+ + 6H 2 O K K = 2. 10 9 [Ni(H 2 O) 6 ] 2+ + 3en [Ni(en) 3 ] 2+ + 6H 2 O K K = 3.8. 10 17 - Komplexbildung mit einem Chelatliganden führt zur Entropiezunahme! H ist für beide Fälle ungefähr gleich. - Mit G°= H°-T S° und G° = -RT ln K K (K K = Bildungskonstante) folgt: Bildung von [Ni(en) 3 ] 2+ negativeres G° grösseres K K Bildung des [Ni(NH 3 ) 6 ] 2+ -Komplexes Teilchenzahl bleibt gleich Bildung des [Ni(en) 3 ] 2+ -Komplexes Teilchenzahl nimmt zu S > 0 - Chelateffekt um so grösser, je mehr Donoratome Chelatligand besitzt
392
Veränderung des Redoxpotentials durch Komplexbildung Durch Komplexbildung kann sich auch das Redoxpotential des Zentralions verändern: [Co(NH 3 ) 6 ] 2+ [Co(NH 3 ) 6 ] 3+ + e - E° = + 0.11Volt Hexammincobalt(II)Hexammincobalt(III) 6 H 2 O O 2 + 4H 3 O + + 4e - E° = + 1.21Volt [Co(H 2 O) 6 ] 2+ [Co(H 2 O) 6 ] 3+ + e - E°= + 1.81Volt Hexaquacobalt(II) Hexaquacobalt(III) reagiert nicht mit O 2
393
- Transport und Speicherung kleiner Moleküle - Redoxkatalyse, Elektronenübertragung - Lewis-Säurenfunktion für die Katalyse meist organischer Reaktionen - Katalyse der Übertragung chemischer Gruppen Funktionen biologischer Komplexe mit Übergangsmetallen
394
Biologische und medizinische Bedeutung von Komplexen Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer und Zink, sowie Molybdän und Wolfram als schwere Überganselemente, treten in biologisch wichtigen Komplexen auf: Als biologische Liganden kommen unter anderen Peptide in Frage Die Donoratome befinden sich in den Seitengruppen, nicht im Hauptstrang Ausschnitt aus der Kette von Rinderinsulin
395
Ligandfähige Aminosäuren in Peptiden sehr gute Ligandeigenschaften Cystein (Cys)Methionin (Met) Schwefeldonatoren Histidin (His) Lysin (Lys) Arginin (Arg) Stickstoffdonatoren Tryptophan (Trp)
396
Tyrosin(Tyr)Asparaginsäure (Asp) Glutaminsäure (Glu) Ligandfähige Aminosäuren in Peptiden Sehr gute Ligandeigenschaften Sauerstoff- donatoren
397
Ligandfähige Aminosäuren in Peptiden mäßige Ligandeigenschaften Serin (Ser)Threonin (Thr) Glutamin (Gln) Asparagin (Asn)
398
Komplexe mit Pyrrol-haltigen Liganden Struktur des Häms mit den zusätzlichen Liganden im Hämoglobin: Histidin der Proteinkette und Sauerstoff Anstelle des Sauerstoffmoleküls können viele andere kleine anorganische Moleküle an Häm binden: CO 2, H 2 O, CO, CN -, NO 2 -, SO 2 Das Porphyrin-Gerüst
399
Komplexe mit Pyrrol-haltigen Liganden Das Corrin-Gerüst Die Struktur von Cobalamin- Derivaten. X = CN - Vitamin B 12
400
Hochpotential-Enzyme Hochpotential-Enzyme besitzen sehr negative Reduktionspotentiale und enthalten Eisen/Schwefel-Cluster (Cluster = geschlossene Komplexstruktur)
401
Medizinische Anwendungen von Übergangsmetall- Komplexen VerbindungEin Handelsname Anwendung/ Bemerkung Zr(IV)glycinat Antitranspirant Vitamin B 12 Ce-cobalinNahrungszusatz Ag(I)sulfadiazinFlamazinAntibakteriell, für schwere Verbrennungen ZnSO 4 ×H 2 OZ-SpanNahrungszusatz Znoxid oder -carbonat (Spuren von Fe 2 O 3 ) Calamin LotionAntimikrobiell und antifungal, Salbe Tc(CNR) 6 + [R = CH 2 C(CH 3 ) 2 OMe] CardoliteMRI des Herzens
402
Medizinische Anwendungen von Übergangsmetall- Komplexen Tc(HMPAO)CeretecMRI des Hirns Gd(DTPA) 2- MagnevistKontrastmittel bei MRI, Anwendung in Dosen bis zu 10g cis-Pt(NH 3 ) 2 Cl 2 CisplatinChemotherapie des Hodenkrebses CarboplatinChemotherapie verschiedener Krebsarten; lässt sich in höheren Dosen als Cisplatin anwenden Au(CH 2 (CO 2 - )CH(CO 2 - )S) MyocrisinAntiarthritisch AuranofinOral gegen rheumatoide Arthritis - O 2 CCH 2 N[(CH 2 ) 2 N(CH 2 CO 2 - ) 2 ] 2 = DTPA
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.