Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Physik jenseits des Standardmodells

Ähnliche Präsentationen


Präsentation zum Thema: "Physik jenseits des Standardmodells"—  Präsentation transkript:

1 Physik jenseits des Standardmodells
Hauptseminar „Der Urknall und seine Teilchen“ Peter Krauß Hauptseminar WS 07/08

2 Gliederung Einführung Das Standardmodell (SM)
Physik jenseits des Standardmodells Allgemeines Grand Unified Theory / Theory of Everything Supersymmetrie Zusammenfassung & Ausblick Gliederung

3 1. Einführung

4 Einführung Das SM beschreibt wie Materieteilchen Wechselwirkungen über Wechselwirkungsteilchen aufeinander ausüben. Bisher gilt das Standard-Modell als weltweit akzeptierter Stand Stimmt mit den experimentellen Beobachtungen in fast allen Bereichen überein pk0 Einführung

5 Einführung Higgs-Mechanismus erklärt wie Teilchen zu Masse gelangen.
Einige offene Fragen können mit dem Standard-Modell nicht beantwortet werden, wie z.B. Warum ist die Ladung des Elektrons und des Protons gleich groß (Lepton / Baryon)? Was geschah in der Planck-Ära? Warum gibt es drei Generationen? Einführung

6 Einführung Lösungsversuche sind diverse Theorien
GUT (Vereinheitlichung der drei Grundkräfte, nicht aber die Gravitation) Supersymmetrie (Postuliert zu jedem Teilchen ein supersymmetrisches Teilchen) String-Theorie (fundamentale Bausteine sind vibrierende, eindimensionale Objekte) Quantengravitation (Vereinigt Quantentheorie und Relativitätstheorie) Einführung

7 Zusammenfassung: Einführung
Das Standardmodell erklärt vieles, aber nicht alles Neue Theorien wollen Standardmodell nicht ersetzen, aber erweitern Feynman: „Das Standardmodell ist zu gut um falsch zu sein.“ Einführung

8 2. Das Standardmodell

9 Das Standardmodell Beschreibt wie Materieteilchen Wechselwirkungen über Wechselwirkungsteilchen aufeinander ausüben. Zu den Materieteilchen (Fermionen, halbzahliger Spin) werden die Leptonen (Elektron, Myon, Tauon & die dazugehörigen Neutrinos) und Quarks (up, down, strange, charm, top, bottom) gezählt. Das Standardmodell

10 Das Standardmodell: Grundkräfte
Die 4 bekannten Grundkräfte sind Starke Wechselwirkung Schwache Wechselwirkung Elektromagnetische Wechselwirkung Gravitation Unterscheidung anhand von Reichweite und Stärke Das Standardmodell

11 Das Standardmodell: Die WW
Name Reichweite Stärke Trägerteilchen Bemerkung Starke WW ≈2.5·10-15m Stärkste alle WW Gluonen Bindet Hadronen aneinander Schwache WW ≈10-18m ≈10-13 mal so stark wie starke WW Z0, W+, W- Zerfallspro-zesse, Kern-fusion EM-WW ≈10-2 mal so stark wie starke WW Photon Licht, Elektrizität, Magnetismus Gravitation ≈10-38 mal so stark wie starke WW Graviton (?) Das Standardmodell

12 Das Standardmodell: WW-Teilchen
Wechselwirkungsteilchen sind die Bosonen (ganzzahliger Spin): Photon (elektromag. WW) Gluon (Starke WW) W, Z – Boson (Schwache WW) Graviton (?) Higgs-Teilchen (?) Das Standardmodell

13 Das Standardmodell: Teilchenzoo
Bosonen Eichbosonen Photon Gluon W, Z Graviton Higgs-Teilchen (?) Fermionen Quarks Up, Down Strange, Charm Top, Bottom Leptonen Elektron, Elektron- Neutrino Myon, Myon- Tauon, Tauon- Das Standardmodell

14 Das Standardmodell: Higgs
Der Higgs-Mechanismus bietet Erklärung woher Teilchen ihre Masse erhalten. 1964 von Peter Higgs entwickelt (Ideen dazu bereits vorher bei anderen) Anschaulich: Star auf Party Star: Teilchen, Gäste: Higgs-Potential Natur zeigt, dass (einige) Bosonen eine Masse besitzen. Das Standardmodell

15 Das Standardmodell: Higgs
Um diese Masse in der Lagrange-Dichte zu berücksichtigen wird ein Higgs-Potenzial eingeführt. Die Form des Higgs-Potenzials entspricht einem „mexican-hat“. Bietet zwei Freiheitsgrade Grundzustand: Kreisförmig Das Standardmodell

16 Das Standardmodell: Higgs
Da nach Rotation in einem anderen Grundzustand, kann eine Abhängigkeit als Phase durch Umeichung heraus gerechnet werden. Nun nur noch ein Freiheitsgrad! Zweiter Freiheitsgrad ist in Masse des Higgsfeldes übertragen worden. → W+-, W--, Z0-Bosonen haben Masse! Higgs-Teilchen steckt im andern Freiheitsgrad. Das Standardmodell

17 Zusammenfassung: Standardmodell
Das Standardmodell beschreibt die Wechselwirkungen zwischen (Materie-)Teilchen (Fermionen) Die Überträgerteilchen sind Eichbosonen. Der Higgs-Mechanismus erklärt, wie Teilchen zu ihrer Masse gelangen Das Standardmodell

18 3. Jenseits des Standartmodells

19 Jenseits des Standardmodells
Das Standardmodell kann einige Fragen nicht zufriedenstellend beantworten Elektronen- und Protonenladung genau gleich groß. Experimente zeigen, dass die Elektronenladung (Lepton) mit einer relativen Genauigkeit von mit der des Protons (Baryon, aus 3 Quarks aufgebaut) übereinstimmt. Warum gibt es 3 Generationen? Zu jedem Quark gibt es ein anderes Quark, was sich in den Quantenzahlen gleicht, aber in der Masse unterscheidet (t, c). Jenseits des Standardmodells

20 Jenseits des Standardmodells
Generation Schwacher Isospin Name Symbol Ladung/e Masse/MeV c-2 1 Up u +⅔ 1,5 - 4,0 Down d -⅓ 4 – 8 2 Strange s 80 – 130 Charm c 1150 – 1350 3 Bottom b 4100 – 4400 Top t Jenseits des Standardmodells

21 Zusammenfassung: Jenseits des Standardmodells
Was geschah in der Planck-Ära? Um zu beschreiben, was direkt nach dem Urknall geschah ist es notwendig sowohl die Gesetze der Teilchenphysik als auch die der Relativitätstheorie zu berücksichtigen, was zu unphysikalischen Aussagen führt. Und viele mehr….(Warum gibt es 4 Kräfte? Warum 18 Parameter (-> Einfachheit!)?...) Darum: Neue Theorien zur Ergänzung. Jenseits des Standardmodells

22 4. Grand Unified Theory

23 Grand Unified Theory Zum Verstehen der GUT ist es notwendig etwas über Symmetrien und Symmetriegruppen zu Wissen Diese sind Mathematische Transformationen, die die physikalischen Beobachtungen invariant lassen Im Standardmodell kann jeder Kraft (grob) eine Symmetriegruppe zugeordnet werden Grand Unified Theory

24 Grand Unified Theory Bsp.: starke Wechselwirkung / Farbwahl betrachteter Teilchen: Wichtig ist nur, ob die Teilchen unterschiedliche Farben haben. Bezeichnung der Farben ist aber einem selbst überlassen. (Analog: Wahl von Nord- / Südpol beim Stabmagnet) Wie lautet mathematische Transformation bei Änderung der getroffenen Farbwahl? Nach Gruppentheorie: Beschreibung durch SU(3)-Matrizen Grand Unified Theory

25 Grand Unified Theory Anhand des Beispiel Zusammenhang Symmetriegruppe / WW plausibel machen. Erwartung: Element (1,1) muss antigrün und blau enthalten, da blau erscheint und grün verschwindet Teilchen die Kombination aus Farbe / Antifarbe tragen können: Gluonen Grand Unified Theory

26 Grand Unified Theory Analog kann man sich diesen Zusammenhang für schwache und elektromagnetische Wechselwirkung klar machen: Bei Eichtransformation der W- & Z-Bosonen müssen die Teilchen (Felder) durch eine SU(2)-Matrix transformiert werden, bei den Photonen durch eine U(1)-Matrix. Grand Unified Theory

27 Grand Unified Theory Im Standardmodell gibt es nun also drei Symmetriegruppen für drei Wechselwirkungen Die GUT versucht nun alle drei Gruppen zu einer zusammenzufassen Man erwartet dann auch nur noch eine Wechselwirkung Es ergibt sich, dass die kleinstmögliche Gruppe die SU(5) ist. Grand Unified Theory

28 Grand Unified Theory Das Schema zeigt, dass der zu transformierende Vektor Gluonen und Leptonen enthält. Die SU(5)-Matrix enthält somit automatisch eine Beziehung zwischen diesen Teilchen Grand Unified Theory

29 Grand Unified Theory Oben links: 3x3-Matrix die die Teilchen der starken Wechselwirkung enthält Unten rechts: 2x2-Matrix mit Teilchen der schwachen Wechselwirkung Auf der Diagonalen: Komponenten der elektromagnetischen Wechselwirkung Neu dazugekommen: X, Y (genannt: Leptoquarks) X, Y können Leptonen in Quarks umwandeln und umgekehrt Überprüfbare Konsequenz: Protonenzerfall Grand Unified Theory

30 Grand Unified Theory Protonenzerfall: Proton zerfällt zu Positron und neutralem Pion, welches dann wieder zu Photonen zerfällt. Grand Unified Theory

31 Grand Unified Theory Aber: Protonenzerfall bis heute nicht beobachtet
Sollte er existieren, so liegt die Halbwertzeit des Protons >1035 Jahren Es gibt Hinweise, dass Protonenzerfall grundsätzlich beobachtbar wäre (Neutrinooszillation). Weiterer wichtiger Aspekt: Im Standardmodell gibt es drei Kopplungskonstanten, bei GUT nur eine. Es muss also eine Energie geben, bei der sich alle drei Kopplungskonstanten treffen. Diese Energie gibt es im Standardmodell nicht! Grand Unified Theory

32 Grand Unified Theory Die Lösung bietet die Supersymmetrie!
Doch zunächst die Zusammenfassung der GUT. Grand Unified Theory

33 Zusammenfassung: GUT Zur Transformation zwischen verschiedener Teilchen werden SU()-Matrizen benutzt Zu jeder Wechselwirkung kann man eine SU()-Matrix finden Die GUT führt eine SU(5)-Matrix ein. Aufgrund der Mischterme sollte ein Protonenzerfall beobachtbar sein. Bisher noch nicht geschehen Vereinigung der Kopplungskonstanten erfolgt über Supersymmetrie. Grand Unified Theory

34 5. Supersymmetrie

35 Supersymmetrie Die Supersymmetrie verbindet Fermionen mit Bosonen
Sie sagt jedem Teilchen mit halbzahligen Spin einen supersymmetrischen Partner mit ganzzahligem Spin voraus und umgekehrt. Aufgrund von Überlegungen im Zusammenhang mit Higgs-Teilchen erwartet man für SuSy-Teilchen eine Masse > 1TeV c-2. Supersymmetrie

36 Namen: „ino“ hinter die Bosonen, „S“ vor die Fermionen
Supersymmetrie Namen: „ino“ hinter die Bosonen, „S“ vor die Fermionen Supersymmetrie

37 Supersymmetrie Die neue Teilchen führen zur Vereinigung der Kopplungs-konstanten. Entscheidend ist der Knick am Anfang der Geraden (≈1TeV). Supersymmetrie

38 Supersymmetrie Aufgrund der großen Massen der Supersymmetrischen Teilchen sind diese bisher noch nicht nachgewiesen worden. Allerdings erwartet man sie demnächst am LHC zu finden. Die Supersymmetrie und die GUT bilden also zusammen eine Erweiterung des Standardmodells, welche einige ungelösten Fragen beantworten können, aber nicht alle. Supersymmetrie

39 Supersymmetrie Zurück zu den Fragen am Anfang:
Warum haben Proton und Elektron die gleiche Ladung? Die SuSy und die GUT trennen Quarks und Leptonen nicht mehr strikt. Sie fordern sogar, dass diese beiden Gruppen verwandte Ladungen haben. Warum gibt es drei Generationen? Leider kann keine der beiden Konzepte hierauf eine Antwort geben – Sie sind gefragt.  Supersymmetrie

40 Supersymmetrie Was geschah in der Planck-Ära und warum gibt es vier Kräfte? Die GUT vereinigt zumindest schon mal drei dieser Kräfte. Wenn nun noch eine Vereinigung mit der Gravitation möglich wird, so wäre es auch möglich die Planck-Ära zu beschreiben. -> TOE Supersymmetrie

41 Zusammenfassung: SUSY
Die Supersymmetrie ordnet jedem Fermion ein Boson zu. Bisher wurden diese Teilchen aber noch nicht nachgewiesen Eventuelle Aussicht auf Nachweis am LHC Es sind immer noch Fragen offen. Supersymmetrie

42 6. Ausblick

43 Ausblick Bisher: Keine experimentellen Belege für SUSY
Hoffnung am LHC (CERN) einige SUSY-Teilchen zu finden LHC (Large Hadron Collider) deckt großen Parameterbereich ab (bis 7 TeV pro Teilchenstrahl) Ausblick

44 Ausblick Die Experimente ATLAS und CMS versuchen SUSY-Teilchen und das Higgs-Boson nachzuweisen Aufgrund großen Parameterbereichs: Gute Chancen Teilchen zu finden, falls diese existieren. Ausblick

45 Ausblick Umfang: 26,7 km Kollidierende Teilchen: Protonen und schwere Ionen Schwerpunktenergie: 14 TeV für Protonen, 1150 TeV für Schwerionen Kollisionsrate: max 40. Mio/sec. Ausblick

46 Ausblick Experimente am LHC sind:
ALICE: Mehrzweckdetektor für Kollision von Schwerionen ATLAS: Vielzweckdetektor für Proton-Proton-Kollisionen (Hier wird nach dem Higgs-Teilchen gesucht) CMS: Mehrzweckdetektor für Proton-Proton-Kollisionen LHC-B: Messung von Eigenschaften von Hadronen mit bottom-Quarks Ausblick

47 Vielen Dank für Ihre Aufmerksamkeit
Ausblick


Herunterladen ppt "Physik jenseits des Standardmodells"

Ähnliche Präsentationen


Google-Anzeigen