Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Physik IV SS Viel-Elektron Atomeﴀ

Ähnliche Präsentationen


Präsentation zum Thema: "Physik IV SS Viel-Elektron Atomeﴀ"—  Präsentation transkript:

1 Physik IV SS 2010 6. Viel-Elektron Atomeﴀ
6. Viel-Elektronen Atome Periodensystem der Elemente LS- und jj-Kopplung 13 Physik IV SS Viel-Elektron Atomeﴀ

2 6.1 Periodensystem der Elemente
Erzeugung des Periodensystems der Elemente durch Auffüllen der Elektronen-Orbitale (n, l, ml, ms): l = l = l = 2 ml = ml = 0, ± ml = 0, ±1, ±2 S-Unterschale P-Unterschale D-Unterschale _____ … n = 4: N-Schale K, Ca … _____ _____ _____ _____ _____ _____ _____ _____ _____ n = 3: M-Schale Na, Mg Al, Si, P, S, Cl, Ar, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn ______ ______ ______ ______ n = 2: L-Schale Li, Be B, C, N, O, F, Ne ms: ↑ ↓ _____ n = 1: K-Schale H, He ms: ↑ ↓ Physik IV SS Viel-Elektron Atomeﴀ

3 Auffüllen der Elektronen-Orbitale
n=2: n=1: l=0: l=1: Pauliprinzip: je 1 Elektron je Zustand (n, l, ml, ms) Unterschale: hat 2(2l +1) Elemente, Hauptschale: hat l=0n−1 2(2l +1) = 2n2 Elemente in der energetisch günstigsten Reihenfolge (1. Hundsche Regel: in den Unterschalen stehen möglichst viele Elektronenspins parallel. Dies ist energetisch günstigster, da: gleiche Spins → symmetrische Spin-Funktion → antisymmetrische Orts-Funktion (Pauli-Prinzip) → die Ladungen sind räumlich getrennt. Ψsymm r r' Ψanti r r' Physik IV SS Viel-Elektron Atomeﴀ

4 Periodensystem der Elemente
Physik IV SS Viel-Elektron Atomeﴀ

5 Auffüllen der Schalen für schwerere Atome
n 2n2 7 6 Transurane Seltene Erden In n. Schale: Bis zu 2n2 Elektronen, d.h. 2n2 versch. Elemente Auffüllen derart, dass: 1. Pauliprinzip gilt: antisymmetrische Gesamtwellenfunktion Gesamtenergie minimiert wird. Unregelmäßige Reihenfolge für Übergangselemente: En+1(s2) < En(d1…10) etc. Übergangsmetalle Physik IV SS Viel-Elektron Atomeﴀ

6 Orbitale im Periodensystem
bis Z = 2(2l+1) Elemente und ihre Orbitale n lν (ν = Anzahl e−) 1 2 2 2 Wasserstoff + Helium 1s1,2 2 2 8 4 Lithium + Beryllium 1s2 2s1, 1s2 2s1,2 1 6 10 Bor … Neon 1s2 2s2 2p1…6 3 2 18 12 Natrium + Magnesium 1s2 2s2 2p6 3s1,2 1 6 18 Aluminium … Argon 1s2 2s2 2p6 3s2 3p1…6 4 2 32 20 Kalium + Calcium 1s2 2s2 2p6 3s2 3p6 4s1,2 3 2 10 30 Selen … Zink " " p6 4s2 3d1…10 4 1 6 36 Gallium … Krypton " " s2 3d10 4p1…6 5 2 50 38 Rubidium + Strontium " " d10 4p6 5s1,2 4 2 10 48 Vanadium …Cadmium " " p6 5s2 4p1,2 5 1 6 54 Indium … Xenon " " s2 4p2 5p1…6 6 1 2 72 usw. usw. usw. Physik IV SS Viel-Elektron Atomeﴀ

7 Konfiguration des Grundzustands
Z Element Symbol Gesamtspin- ~bahn- Ges.-Drehimp Grundzust.-Term: n 2S+1LJ 1 Wasserstoff H S = ½ L = 0 J = ½ 1 2S½ Helium He S = 0 L = 0 J = S0 3 Lithium Li S = ½ L = 0 J = ½ 2 2S½ Beryllium Be S = 0 L = 0 J = S0 5 Bor B S = ½ L = 1 J = ½ 2 2P½ 6 Kohlenstoff C S = 1 L = 1 J = P0 7 Stickstoff N S = 3/2 L = 0 J = 3/2 2 4S3/2 8 Sauerstoff O S = 1 L = 1 J = P2 9 Fluor F S = ½ L = 1 J = 3/2 2 2P3/2 10 Neon Ne S = 0 L = 0 J = S0 11 Natrium Na S = ½ L = 0 J = ½ 3 2S½ ↑ mögliche J = |L−S| bis L+S ↑ Gesamt-L aus p-Schale, Pauli-Prinzip ↑ Gesamtspin S nach Hunds Regel Welcher der (nach der Drehimpulserhaltung möglichen) Werte von L und J tatsächlich die niedrigste Energie hat, dh. den Grundzustand bildet, ist oft nicht eindeutig, sondern muss gemessen oder berechnet werden. Physik IV SS Viel-Elektron Atomeﴀ

8 Chemische Ähnlichkeiten
Die chemischen Eigenschaften sind hauptsächlich durch die Leuchtelektronen der Hülle bestimmt, nur wenig durch die Elektronen im Rumpf, der Edelgaskonfiguration besitzt. Elektronen mit gleicher Anzahl Leuchtelektronen stehen im Perioden-System untereinander und haben ähnliche chemische Eigenschaften. Ebenso sind sich Elemente, die sich nur in den inneren Schalen unterscheiden, einander sehr ähnlich (Beispiel: Seltene Erden, Transurane). Physik IV SS Viel-Elektron Atomeﴀ

9 Chemische Ähnlichkeiten
← VII Halogene ← VIII Edelgase ← II Erdalkalis ← I Alkalis ← III ← IV ← VI ← V Übergangs- Metalle | Chemische Ähnlichkeiten n 1 2 3 4 5 6 7 |→ instabile Kerne = seltene Erden |→ Transurane Physik IV SS Viel-Elektron Atomeﴀ

10 Äußere Eigenschaften der Atome
Vn En Bohrmodell: rn~n2/Z, En ~ Z2/n2. Elektronen sehen nicht die volle Kernladung Z, sondern Zeff ≤ Z. Atomvolumen Vn=4/3πrn3 ~ n6/Zeff3 Ionisationsenergie En ~ Zeff2/n2 Zeff: ist groß für Edelgase = gefüllte n. Hauptschale, dh. Vn klein, En gross. ist klein für Alkalis = gefüllte Hauptschale +1 Elektron, dh. Vn gross, En klein. Empirisch: mittleres Zeff ≈ n. dh. mittleres Atomvolumen Vn~ n6/Zeff3 ≈ Zeff3, mittlere Ionisationsenergie En ~ Zeff2/n2 ≈ const Physik IV SS Viel-Elektron Atomeﴀ

11 Konfiguration der angeregten Zustände
Beispiel Stickstoff Quartett ( n=1 nicht gezeigt)) Grundzustand: 1s2 2s2 2p3: 4S3/2, Grund: Hunds Regel: S = 3/2, dh. 2S+1=4, Quartett, drei p-Elektronen mit je l = 1 koppeln zu L = 0, dh. J = 3/2. 1. angeregter Zustand: 1s2 2s2 2p2 3s1: 4P1/2,3/2,5/2, dh: S = 3/2; (Interkombinationsverbot zu S = 1/2), zwei p-Elektronen mit je l = 1 koppeln zu L = 1, J = |L−S|, …, L+S = 1/2, 3/2, 5/2 2. angeregter Zustand: 1s2 2s1 2p4: 4P1/2,3/2,5/2 , dh: S = 3/2; vier p-Elektronen mit je l = 1 koppeln zu L = 1, 3. angeregter Zustand: 1s2 2s1 2p3 3p1: 4D1/2,3/2,5/2,7/2 vier p-Elektronen mit je l = 1 koppeln zu L = 2, dh. J = |L−S|, …. L+S = 1/2, 3/2, 5/2, 7/2 (N.B.: Wenn L ≠ 0 und S ≠ 0: # Feinstrukturniv's = Min(2S+1,2L+1)) s p n = 3: n = 2: ↑↓ s p n = 3: n = 2: ↑↓ s p n = 3: n = 2: ↑↓ s p n = 3: n = 2: ↑↓ Physik IV SS Viel-Elektron Atomeﴀ

12 Termschema Stickstoff
1s2 2s1 2p4 4P1/2,3/2,5/2 1s2 2s2 2p2 3s1 4P1/2,3/2,5/2 Metastabil: Grundzustand: Physik IV SS Viel-Elektron Atomeﴀ

13 Physik IV SS 2010 6. Viel-Elektron Atomeﴀ
6.3 LS- und jj-Kopplung l1 μ1 l2 μ2 1. LS-Kopplung leichter Atome Beispiel 2 Elektronen: 4 Drehimpulse müssen addiert werden. Leichte Atome: sind ≈ nicht-relativistisch, dh. schwache Spin-Bahn LS-Kopplung, daher: erst starke Kopplung der Bahndrehimpulse verschiedener Elektronen zu L = l1 + l2 durch Kopplung der zugehörigen magnetischen Momente μ1 = γ l1, μ2 = γ l2 (gyro-magnetisches Verhältnis γ = gl μB/ħ) mit Wechselwirkungs-Energie Ell = −μ1·B2 ~ μ1·μ2 ~ l1·l2 und starke Kopplung der Spins verschiedener Elektronen zu S = s1 + s2 durch Kopplung der zugehörigen magnet. Momente μ1' = γ s1, μ2' = γ s2 mit Wechselwirkungs-Energie Ess = −μ1'·B2' ~ μ1'·μ2' ~ s1·s2 dann schwache "LS-Kopplung" zum Gesamt-Drehimpuls J = L + S. l1 L l1z l2z s1 μ1' s2 μ2' s1 s1z s2z S J = L+S L = ∑i li S = ∑i si Physik IV SS Viel-Elektron Atomeﴀ

14 Energieniveaus bei LS-Kopplung für 2 Elektronen
Aufspaltung nach: | Gesamt-Spin S | -Bahndrehimpuls L | Gesamtdrehimpuls J=L+S | am Bsp. l1 = 1, l2 = 2| S = ½ ± ½ = 0, 1 | L = |l1 − l2|, …, l1 + l2 | J = |L − S|, …, L + S | ΨSym(r1, r2): energetisch ungünstig ΨAntisym(r1, r2): energetisch günstig =2J+1 Hunds Regeln: energetisch günstig ist 1. großes S ; für gegebenes S grösstes L,da kleines Zeff ) Physik IV SS Viel-Elektron Atomeﴀ

15 2. jj-Kopplung schwerer Atome
Die Elektronen schwerer Atome können relativistisch sein; Bohr: υ/c ~ αZ/n → 1 dh. in schweren Atomen wird l·s-Kopplungsenergie Els groß gegen Ell und Els. Die einzelnen Elektronen koppeln zuerst ihren Bahndrehimpuls und Spin zum Gesamt-Drehimpuls des Einzelelektrons: ji = li + si Dann werden diese Einzel-Drehimpulse relativ schwach gekoppelt zum Gesamt-Drehimpuls des Atoms J = ∑i ji Der Gesamt-Drehimpuls J ist erhalten, aber nicht L und S, dh. L, S, Lz, Sz sind keine gute Quantenzahlen mehr, d.h. die Nomenklatur 2S+1LJ ist nicht mehr sehr sinnvoll. l1 j1 s1 l2 j2 s2 J = L+S j1 = l1+s1 j2 = l2+s2 Physik IV SS Viel-Elektron Atomeﴀ

16 Vergleich LS- und jj-Kopplung
1. leichtes Element C: LS-Kopplung: 1s2 2s2 2p2 S = 1, L = 1, J = 0: 3P0 = Triplet (↑ Hunds Regel) 2. schweres Element Pb: jj-Kopplung …. 6s2 6p2 s1 = 1/2, l1 = 1: j1 = 1/2 oder 3/2 s2 = 1/2, l2 = 0: j2 = 1/2 starke Kopplung der li und si,zu ji, mit starker Aufspaltung, dann schwache Kopplung der ji zu Doublets J = 0, 1 und 1, 2 C s p n = 2 ↑↓ Pb s p n = 6 ↑↓ Physik IV SS Viel-Elektron Atomeﴀ

17 Übergang LS- zu jj-Kopplung
am Beispiel der angeregten Zustände der Elemente der 4. Spalte des Periodensystems, s. vorige Seite: 1 Singulett S = 0 1 Triplett S = 1 2 Doubletts Physik IV SS Viel-Elektron Atomeﴀ


Herunterladen ppt "Physik IV SS Viel-Elektron Atomeﴀ"

Ähnliche Präsentationen


Google-Anzeigen