Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Current Version; CCM E39/C Future: ECHAM5/MECCA

Ähnliche Präsentationen


Präsentation zum Thema: "Current Version; CCM E39/C Future: ECHAM5/MECCA"—  Präsentation transkript:

1 Current Version; CCM E39/C Future: ECHAM5/MECCA
Surface, aircraft, lightning NOx Emissions [Tg N/a] Radiation Long-wave Short-wave Chemical Boundary Conditions Atmosphere: CFCs, at 10 hPa: ClX, NOy, Surface: CH4, CO Chemistry (CHEM) Methane oxidation Heterogeneous Cl reactions PSC I, II, aerosols Dry/wet deposition Photolysis Feedback O3, H2O, CH4, N2O, CFCs Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water), hydrological cycle, diffusion, gravity wave drag, transport of tracers, soil model, boundary layer; sea surface temperatures. T30, 39 layers, top layer centred at 10 hPa Dynamics (ECHAM) Lagrangian Transport ATTILA Stenke&Grewe 2005 Hein et al., 2001

2 Transiente Model simulation - Boundary Conditions
QBO Solar cycle and volcanoes Dameris et al., 2005

3 Transiente Model simulation - Boundary Conditions
Sea surface temperatures and ice coverage: Monthly means: UK Met Office Hadley Centre, hier: Beispiel für Juni 1985 (Rayner et al., 2003) Natural und anthropogenic NOx emissions: Source Reference Emissions: 1960 to 2000 Industry Benkovitz et al., TgN/a Lightning Grewe et al., ~5 TgN/a Air traffic Schmitt und Brunner, TgN/a Surface Traffic Matthes, TgN/a Ships Corbett et al, TgN/a Biomass Burning Lee, pers. comm TgN/a

4 Evolution of ozone column [DU]: 1960 - 2000
Ozone hole High variability 1960 1980 1980 2000

5 Grewe, 2004

6 De-seasonalized anomalies of the ozone columns [%]
+ - QBO clearly visible 11y- Solar cycle recognizable, but QBO, volcanoes, trend overlaid 1960 1980 Global Trend: ~20 DU 1980 2000

7 Ozone influx from the stratosphere to the troposphere
Estimate based on correlations with long-lived species: 475 Tg/year (Murphey and Fahey, 1994) and with flux calculations: NH: 252 Tg/a SH: 248 Tg/a (Olson et al., 2004) Monthly means Signal of solar cycle identifyable especially on SH Large interannual variability No trends recognizable x De-seasonalized

8 Simulated ozone origin
Grewe, 2005

9 Ozone influx: ozone origin
Northern Hemisphere: Ozone mainly produced in NHMS TRMS TRTS NHMS: high inter-annual variability Southern Hemisphere: Ozone mainly produced in TRTS SHMS TRLS SHMS low inter-annual variability  solar cycle visible Grewe, 2005

10 The lightning NOx source
Kurz and Grewe, 2002

11 Variability and trends in the tropical UT: ENSO
MLS H2O, UT, Tropics E39/C H2O, 200 hPa,Tropics 150E 90W (ppmv) Longitude Model reproduces individual strong events almost identical, e.g. 1995/96, 1997/98

12 Marked ozone tracers in a NMHC-model: MOZART-2
1890 1990 anthropogenic natural stratosphere Lamarque et al., 2005

13 Ozone changes in the tropical upper troposphere (30S-30N; 500-200 hPa)
Lightning: most important source for ozone Large contrib. to variability Stratospheric ozone second most important source From 1990 Industry and surface transportation

14 De-seasonalized ozone changes in the tropical UT
Stratospheric ozone follows influx from stratosphere, producing ±2% variability out of a totale interannual var. of ±4% Lightning ozone correlated with Nino Index variability: ±1-2%

15 Evolution of ozone in NH lower troposphere (30N-90N; 500-1000 hPa)
Most important sources: Industry, surface transportation, lightning, stratosphere

16 Evolution of de-seasonalized ozone in NH lower troposphere (30N-90N; 500-1000 hPa)
~25% ~30% -5% Year-to-year variability strongly dominated by stratosphere (±5%) Trend in ozone (25% increase): - results from increase in NOx emissions (Industry and traffic) Trend reduction in 80s caused by lower emissions and lower stratospheric contribution.

17 Conclusion (1) Stratosphere realistical variability of dynamics
realistical ozone trend (10% by H2O trend Stenke&Grewe, 2005) Interannual ozone-variability well reproduced (DWD-Ozonbulletin) Validation mainly based on direct comparison with observation (TOMS, ...) Stratosphere-Troposphere Exchange ozone influx diagnosed, solar cycle influences variability different ozone origins for STE on NH and SH results in different variability Findings based on special diagnostics: ozone origin Troposphere inter-annual variability in ozone attributed to sources NH ozone trend: Industry+Traffic (+30%), slower in 80s Reduction in 80s, caused by Strat-O3 Findings based on special diagnostics: ozone emission relation (tagged tracers)

18 Conclusion (2) The identification of climate-chemistry interactions,
e.g. 'How does climate change chemistry?' largely depends on additional diagnostics. 2 Diagnostics presented a) Ozone origin diagnostic b) Ozone - emissions source relation How well do we understand these processes: a) How much of the ozone in the troposphere is originally produced e.g. in the tropics 30 km? b) How much ozone is produced e.g. by lightning? Model intercomparison would help to understand these processes. Observational data maybe partly available.

19 Institut für Physik der Atmosphäre

20 Ozone Chemistry - Stratosphere
Source: IETZE & Eber-Hard, UBA Production Destruction

21 Ozone Production: O2  O + O O2 + O  O3
Ozone Chemistry - troposphere Ozone Production: O2  O + O O2 + O  O3 O2

22 Transiente Model simulation - Aufwand and Realization
Supercomputer Simulation + raw data preparation Preparation of the simulation: 1 year; 10 Persons; Literatur recherche, Data preparation, Development of diagnostics, Development of run-scripts Realization: 1/2 year on NEC SX4 using 1-3 Processors Roughly 1 TByte Output Workstation Visualization Internet Control

23 Overview Motivation Modell / Experiment Stratosphere:
Circulation: Validation Chemistry: Ozone: What determines its variability? Impact on the troposphere Troposphere NOx and Lightning Ozone Trends Summary

24 E39/C vs. NCEP: Zonal Wind (60°N) and Temperature (80°N) in 30 hPa
Temperatur Model Observation High variability on Northern Hemisphere well represented

25 E39/C vs. NCEP: Zonal Wind (60°S) and Temperatur (80°S) at 30 hPa
Temperature Model Observation Low variability on Southern Hemisphere well represented; BUT: Cold-Pole Problem

26 Strengthening of the Jet streams and cooling But: Within variability
E39/C: Zonal Wind (60°N) and Temperature (80°N) Temporal development of polar vortex Wind Temperature Between 60s and 70s-90s: Strengthening of the Jet streams and cooling But: Within variability

27 Polar vortex exists longer
E39/C: Zonal Wind (60°S) and Temperature (80°S) Temporal development of polar vortex Wind Temperature Polar vortex exists longer

28 E39/C vs. MSU Channel 4: Global mean temperature anomalies in the lower stratosphere (15-23 km)

29 Variability und trends in der LS: Temperature
Trend + Solar Cycle + Volcanoe Linear trend Solar cycle  stepwise cooling of the stratosphere Volcanoes

30 Variability of ozone column at 25°S - 25°N Influence of the sun
WMO, 2003; fig. 4-5

31 E39/C vs. Observation: Anomalies of ozone column
calm, stable winter situations Beginning of 90s: stronger ozone losses E39/C Individual strong events well represented TOMS Ground stations -> Rudi Deckert (Bojkov and Fioletov, 1995; pers. com. Fioletov, 2004)

32 Ozone climatologies: E39/C and TOMS
E39/C: (60-79) minus (80-99)

33 Ozon-Mischungsverhältnis [in ppbv] - Mittelwert 1960-1969
inter-annual variability

34 Overview Motivation Modell / Experiment Stratosphere:
Circulation: Validation Chemistry: Ozone: What determines its variability Impact on the troposphere Troposphere NOx and Lightning Ozone Trends Summary

35 Total Cloud Coverage (%)
ECHAM ISCCP V. Grewe, M. Ponater, M. Dameris, R. Meerkötter; (DLR-IPA)

36 Monthly means, area averaged
Total cloud cover from the transient run of the ECHAM model in comparison to ISCCP, ECC, and SYNOP data sets d=+12% c=0.2 ECHAM, 24h ISCCP-D2, 12:00 UT d=-16% c=0.7 ECHAM, 24h ECC, ~11:30-16:30 UT d=0.0% c=0.4 Total cloud amount from ECHAM shows no trend over the whole 40 years period but variations on a decadal scale, espicially in the minimum values Differences among ISCCP, ECC, and SYNOP is in the order of differences between ECHAM and each of the data sets. ECHAM and ECC show almost the same amplitude in seasonal variability leading to the highest correlation, but the minimum mean difference is found between ECHAM and SYNOP. ISCCP shows almost no seasonal variability ISCCP cloud amounts are higher, ECC cloud amounts are lower than ECHAM results NOTE, it is an example for Germany, monthly mean ECHAM data result from 24 hour averages d = mean digfference c = correlation coefficient Monthly means, area averaged Meerkötter et al., 2004 ECHAM, 24h SYNOP, 12:00 UT R. Meerkötter, V. Grewe, M.Dameris, M. Ponater; (DLR-IPA), H. Mannstein (DLR-IPA), G. Gesell (DLR-DFD), C.König (DLR-IPA)

37 Modelled Lightning (convective massflux) vs Observations
E39/C model OTD Satellite data Kurz and Grewe, 2002

38 Simulated evolution of cloud to ground lightning 1960 to 2000
El Nino events

39 Variability and trends in the tropical UT: ENSO
E39/C H2O, 200 hPa, 20°N-20°S, „detrended” - ENSO-Index: El Niño, La Niña 1960 1980 2000 Starker El Niño: +30 ppmv H2O : SST (Nino3.4) Nino3.4: 5°N-5°S, 170°W-120°W Lag-Korrelation: 3 Monate Korrelationskoeffizient r = 0.67 H2O/ SST = 5.3 ppmv/K Stenke, 2005

40 Simulation and Observations of NOx
Upper troposphere: Air traffic corridor Tropospheric column Observations Satellite Measurements Aircraft Measurements - NOXAR Grewe et al., 2002 Lauer et al., 2002, Modell E39/C

41 Ozon-Differenzen: (90-99) minus (60-69) [in ppbv]

42 Temperatur [in K] - Mittelwert 1960-1969

43 Temperatur-Differenzen: (90-99) minus (60-69) [in K]

44 Zonal Wind [in m/s] - Mittelwert 1960-1969

45 Zonal Wind-Differenzen: (90-99) minus (60-69) [in m/s]

46 Änderungen des Tropopausendrucks

47 Änderungen des Wasserdampf-Mischungsverhältnis an der thermischen Tropopause

48 E39/C: Wasserdampftrend in 80 hPa, 40°N und 40°S
Randel et al., 2004

49 E39/C: Wasserdampftrend an der thermischen Tropopause 1980-2000 (!)
Boulder 40°N

50 Variabilität durch vorgeschriebene Antriebe
Einfluss von Vulkanen

51 Variabilität durch vorgeschriebene Antriebe
Einfluss der quasi-zweijährigen Oszillation (QBO)

52 Anomalien der Ozongesamtsäule, bezogen auf 1964 bis 1980

53 Ozonbulletin des DWD, November 2004

54 Variabilität der Ozongesamtsäule in 30° - 60°N, JFM
12 DU ± 4 DU

55 Variabilität durch vorgeschriebene Antriebe
Einfluss der solaren Aktivität (11-Jahres Zyklus)

56 Ozonproduktionsrate und -photolyserate in 10, 30 und 50 hPa

57 Zusammenfassung Ergebnisse der früheren Zeitscheibenexperimente (1960, 1980, 1990) und die daraus abgeleiteten Schlüsse (z.B. Hein et al., 2001; Grewe et al., 2001; Schnadt et al., 2002) werden bestätigt. Berechnete klimatologische Mittel dynamischer und chemischer Größen sowie saisonale und interannuale Variationen stimmen mit Beobachtungen weitestgehend überein. Langzeitliche Veränderungen (Trends) werden in der transienten Simulation zufriedenstellend reproduziert. Das Modell zeigt überraschenderweise Ähnlichkeiten mit beobachteten, singulären Ereignissen, besonders in der Südhemisphäre. Vorgeschriebene Meeresoberflächentemperaturen, die Berücksichtigung der solaren Variabilität und der QBO spielen für die Variabilität der (Modell-)Atmosphäre eine wichtige Rolle, große Vulkanausbrüche beeinflussen die Atmosphäre nur für wenige Jahre.

58 Ozonbulletin des DWD, November 2004

59 Ozone production and destruction: 50°N, 50 hPa

60 Ozone anomalies in 50°N, 50 hPa, related to 1967 - 1979


Herunterladen ppt "Current Version; CCM E39/C Future: ECHAM5/MECCA"

Ähnliche Präsentationen


Google-Anzeigen