Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Christiane Rauschenberg Geändert vor über 11 Jahren
1
Axiome von Peano 1. 1 ist eine natürliche Zahl
2. Jede Zahl a hat einen bestimmten Nachfolger a+ in der Menge der natürlichen Zahlen. 3. Stets ist a+ 1. 4. Aus a+ = b+ folgt a = b. 5. Es gilt das Prinzip der vollständigen Induktion. N = {1, 2, 3, 4, ...} 1
2
Zahlenmengen N = Menge der natürlichen Zahlen
Z = Menge der ganzen Zahlen Q = Menge der rationalen Zahlen R = Menge der reellen Zahlen C = Menge der komplexen Zahlen
3
Zahlenmengen C R C\R Q R\Q Z Q\Z N {0} Z-
4
Dezimalsystem Basis 10 Beispiel: 3476 = 3•103+4•102+7•101+6•100 Einer
Zehner Stellenwertsystem Hunderter Tausender
5
Weitere Zahlensysteme
Dualsystem: Basis 2 = 1•25+0•24+1•23+1•22+0•21+1•20 Hexadezimalsystem: Basis 16 A8E5 = 10•163+8•162+14•161+5•160 Oktalsystem: Basis 8 3762 = 3•83+7•82+6•81+2•80
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.