Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic.

Slides:



Advertisements
Ähnliche Präsentationen
Finding the Pattern You Need: The Design Pattern Intent Ontology
Advertisements

R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
The difference between kein and nicht.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Peter Marwedel TU Dortmund, Informatik 12
Wenn…… the conditional. Using the conditional tense The conditional tense is used to talk about something that happens only after something else happened.
24. April 2009 Cosmology/Supersymmetry, SS 09, Prof. W. de Boer/Prof.. Kazakov 1 Introduction Outline: 1.Basics of SM 2.Need for Supersymmetry beyond SM.
Lancing: What is the future? Lutz Heinemann Profil Institute for Clinical Research, San Diego, US Profil Institut für Stoffwechselforschung, Neuss Science.
Three minutes presentation I ArbeitsschritteW Seminar I-Prax: Inhaltserschließung visueller Medien, Spree WS 2010/2011 Giving directions.
Introduction to the topic. Goals: Improving the students essay style in general Finding special words and expressions that can be used in essay writing.
Haben – to have ich habe du hast er/sie hat es hat man hat wir haben
Die Hausaufgaben: Machen Sie Ü. 7 auf S. 29
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Simple Past Tense.
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
Plural Forms of Nouns & Wie viel? or Wie viele?
Donnerstag, den 28. November FUTURE HOLIDAYS Lernziel: to learn how to express future ideas. Starter: Finde ein Paar! will plane...zu werde hoffe...zu.
Meine Schulfächer.
Prepositions nach mit in seit bei hinter von aus zu auf für vor.
bei in seit mit auf hinter von nach aus zu für vor.
Wie komme ich zu..... ? (how do I get to....?)
You need to use your mouse to see this presentation
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
DEUTSCHLAND UND DIE MEDIEN
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Verben Wiederholung Deutsch III Notizen.
Objective: By the end of this lesson you should be able to talk confidently about what you have done in the past tense. Quick Starter! How do you form.
Kölner Karneval By Logan Mack
Impairments in Polarization-Multiplexed DWDM Channels due to Cross- Polarization Modulation Marcus Winter Christian-Alexander Bunge Klaus Petermann Hochfrequenztechnik-Photonik.
Einführung Bild und Erkenntnis Einige Probleme Fazit Eberhard Karls Universität Tübingen Philosophische Fakultät Institut für Medienwissenschaft Epistemic.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
The most obvious or direct use of auch is to mean also. Ich möchte auch Gitarre lernen. Auch ich möchte Gitarre lernen. I would like to learn Guitar. Someone.
Hätte gern vs. Möchte gern
Cross-Polarization Modulation in DWDM Systems
Welcome Instructor: Dominik Dwight Zethmeier
© Boardworks Ltd of 8 Time Manner Place © Boardworks Ltd of 8 This icon indicates that the slide contains activities created in Flash. These.
By: Jade Bowerman. German numbers are quite a bit like our own. You start with one through ten and then you add 20, 30, 40 or 50 to them. For time you.
Negation is when you dont have or dont do something.
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
HRM A – G. Grote ETHZ, WS 06/07 HRM A: Work process design Overview.
Hier wird Wissen Wirklichkeit 1 Gravitational Radiation From Ultra High Energy Cosmic Rays In Models With Large Extra Dimensions Benjamin Koch ITP&FIGSS/University.
Sentence Structure Subject and verb are always together. Subject and verb are always together. Subject and verb must agree Subject and verb must agree.
To school => zu der Schule With friends => mit den Freunden On top of the desk => auf dem Schreibtisch Through the wall => durch die Wand.
German Word Order explained!
2 Exkurs: Der personenzentrierte Ansatz nach Carl R. Rogers
Separable Verbs Turn to page R22 in your German One Book R22 is in the back of the book There are examples at the top of the page.
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
THE PERFECT TENSE IN GERMAN
You need to use your mouse to see this presentation
OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fakultät für Verfahrens- und Systemtechnik Institut für Apparate- und Umwelttechnik INNOVATION AND TECHNICAL PROGRESS:
You need to use your mouse to see this presentation © Heidi Behrens.
1.Usage/Purpose 2.Forms Present Tense Simple Past Tense 2.Meanings 3.Word Order/Placement modal + infinitive omission of infinitives 4. Saying what you.
Weak pushover verbs..... lieben kaufen spielen suchen....are verbs that do exactly as they are told. They stick to a regular pattern that does not change!
Jetzt machen Venues aufmachen!!! Geh zu
You need to use your mouse to see this presentation
THE PERFECT TENSE IN GERMAN
 Präsentation transkript:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic cosmic proton and pair production by a (back-scattered) photon Manfred Hanke, August 2005: QED- Project (guided by Prof. A. Schäfer)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section - Kinematics - Differential probabilities - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary Contents of this talk:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Cosmic background radiation - predicted by G. Gamow and R. Alpher in the 1940s - discovered by A. Penzias and R. W. Wilson in 1964 (Nobelprize in 1978) - follows Plancks formula for black-body-radiation with T = 2,725 K:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Cosmic background radiation - predicted by G. Gamow and R. Alpher in the 1940s - discovered by A. Penzias and R. W. Wilson in 1964 (Nobelprize in 1978) - follows Plancks formula for black-body-radiation with T = 2,725 K:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Cosmic rays - high-energy particles (up to eV) - mostly (97%) nucleons, especially protons, -particles - discovered in 1912 by V. Hess (Nobelprize 1936)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Fluxes of Cosmic Rays (1 particle per m²·s) Knee (1 particle per m²·year) (1 particle per km²·year) Ankle Flux Energy

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Cosmic rays - high-energy particles (up to eV) - mostly (97%) nucleons, especially protons, -particles - origin: solar eruptions, supernovae, cosmic jets (from black holes / pulsars),..., ? - Nucleons with energies higher than 5·10 19 eV loose their energy by the GZK-effect: (Greisen-Zatsepin-Kuzmin) + p + N + What is the energy-loss through Compton-scattering? - discovered in 1912 by V. Hess (Nobelprize 1936)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik QED -Compton-scattering e + e + (Klein-Nishina) Easy calculation of the cross-section in the Dirac-theory: How to calculate Compton-scattering off a proton?

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section - Kinematics - Differential probabilities - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary Contents of this talk:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik The cross-section To calculate the energy-loss through Compton-scattering, one needs... for Compton-scattering off a proton, with one finds: In Hildebrandt, Griesshammer, Hemmert, Pasquini: Signatures of Chiral Dynamics in Low Energy Compton Scattering off the Nucleon (nucl-th/ ) the A i s defined as page- long integrals over two Feynman parameters (!)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik, for example, is given by: A1A1

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Where do these expressions come from? EFT (Chiral Effective Field Theory) The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom.

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Where do these expressions come from? EFT (Chiral Effective Field Theory) The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom, whereas the Small Scale Expansion formalism includes explicit spin 3/2 nucleon resonance degrees of freedom.

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Where do these expressions come from? EFT (Chiral Effective Field Theory) The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom, whereas the Small Scale Expansion formalism includes explicit spin 3/2 nucleon resonance degrees of freedom (and within that – in my opinion – very exotic couplings, like N or N N, for which the parameters have been fitted from experimental cross section data).

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Here, the following abbreviations and constants are used: for > 0 - m 130 MeV, the values get imaginary due to the resonance, and zero-values cause numerical divergencies by the denominators! Problem:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik numerical results for < 130 MeV 20 nbarn The cross-section

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik - for the energy-loss of the proton:, z := cos (proton, scattered photon) cm To calculate the energy-loss through Compton-scattering, one needs... In the relativistic limit, one gets - for the photon-energy in the center-of-mass-frame: Here is k := energy of the cosmic background photon, := cos (proton, photon) lab Kinematics

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Now, one can calculate... k := energy of the cosmic background photon, := cos (proton, photon) lab, z := cos (proton, scattered photon) c Differential probabilities

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik one can look at the spectrum of interacting photons : Now, as one has calculated the differential probability

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Do you see any difference to the Planck-spectrum? (E p = eV) Spectrum of interacting photons

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Now, as one has calculated the differential probability, one can look at the For the numerical simulation, the -function is realized by a histogram. spectrum of energy-loss :

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Spectrum of energy-loss (E p = eV)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik One can rewrite the -function and perform the integral over z to get an analytic expression for that is only an integral over k and, which can more easily be numerically determined. Spectrum of energy-loss

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Spectrum of energy-loss (E p = eV)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik The mean energy-loss 5.3 MeV / ly for proton with E p = eV ~ E p 2

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Result - The low energy-loss is due to the small cross-section for Compton-scattering. 1. Energy-loss of a cosmic proton - A mean energy-loss of 5.3 MeV / ly for eV- protons corresponds to a mean free path of 1.9 · ly. (The mean distance between galaxies is of order 10 6 ly.) - Compton-scattering of the cosmic background radiation off such a ultra-high-energy cosmic proton therefore does not lead to a noticeable decceleration of cosmic rays. The result is, that there is no result. (what concerns the decceleration of cosmic protons)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik But: The protons energy-loss (up to eV for E p = eV) is added to the photons energy. (This is known as Compton-back-scattering / inverse Compton-scattering, which is one way to produce ultra-high-energy cosmic -rays. ) What happens with these high-energetic photons? e + / e – - pair production from single photons is not allowed, but they can interact with the cosmic background radiation. 2. Mean free path of a back-scattered photon

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section - Kinematics - Differential probabilities - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary Contents of this talk:

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik The total cross-section for e + / e – - pair production from two photons (Breit-Wheeler) It is. As a result from kinematics:,

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik The total cross-section

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Differential probabilities k 0 = 3.21 · 10 9 MeV k max(CMB) k max( ) maximum

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Differential probabilities k 0 = 5 · 10 7 MeV k max(CMB) < k max( ) suppression by the exp-factor

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Differential probabilities k 0 = MeV k max( ) < k max(CMB) suppression by the k²-factor

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik rapid decrease of probability for k 0 < 5 · 10 8 MeV Mean free path dW / dL ( k 0 = 10 9 MeV) = 2.52 · / ly dW / dL ( k 0 = 10 8 MeV ) = 2.28 · / ly dW / dL ( k 0 = 10 7 MeV ) = 1.60 · / ly

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Mean free path (slow) decrease of probability for k 0 > MeV dW / dL ( k 0 = MeV ) = 3.0 · / ly dW / dL ( k 0 = MeV ) = 9.4 · / ly dW / dL ( k 0 = MeV ) = 2.0 · / ly

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Mean free path minimal probability at k 0 = 3.21 · 10 9 MeV dW / dL = 3.8 · / ly maximal mean free path = 26 · 10 3 ly

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Result 2. Mean free path of a back-scattered photon The universe should be almost transparent for very-high-energy -rays with k 0 < eV (at least what concerns e + /e – -pair production) – the mean free paths are billions of lightyears! Photons with ultra-high energies 2·10 14 eV < k 0 < eV should interact with the cosmic background radiation and create e + /e – -pairs within less than 3 million ly, what is approximately the mean distance of galaxies. There should be no ultra-high-energy extragalactic -rays! (Back-scattered photons with these energies cant be observed.)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section - Kinematics - Differential probabilities - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result Contents of this talk: 3. Summary

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik from EFT: 20 nbarn Contents of this talk: 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section - Kinematics - Differential probabilities - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary : spectrum of energy-loss

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Spectrum of a protons energy-loss due to Compton-scattering

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Contents of this talk: 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section from EFT: 20 nbarn - Kinematics - Differential probabilities: spectrum of energy-loss - Mean energy-loss - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary : ~ E p 2, but only 5.3 MeV / ly for E p = eV

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Contents of this talk: 0.Introduction - Cosmic background radiation - Cosmic rays - Compton-scattering 1.Energy-loss of a cosmic proton due to Compton-scattering - Cross-section from EFT: 20 nbarn - Kinematics - Differential probabilities: spectrum of energy-loss - Mean energy-loss: ~ E p 2, but only 5.3 MeV / ly for E p = eV - Result 2.Mean free path of a back-scattered photon - Cross-section - Differential probabilities and mean free path - Result 3.Summary : 26 · 10 3 ly : no -rays with 2·10 14 eV < k 0 < eV (k 0,min = 3.2·10 15 eV)

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Thank you very much for your attention! Thats it!