Struktur-Funktions-Modelle von Pflanzen

Slides:



Advertisements
Ähnliche Präsentationen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Advertisements

Informatik 12 | DAES Compilerbau Wintersemester 2010 / 2011 Dr. Heiko Falk Technische Universität Dortmund Lehrstuhl Informatik 12 Entwurfsautomatisierung.
Java: Objektorientierte Programmierung
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
Regelbasierte Programmierung mit XL
Regelbasierte Programmierung mit XL
Relationale Wachstumsgrammatiken und GroIMP:
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Udo Bischof Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Ergänzung zu Teil 1 Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen.
Prof. Dr. Gerhard Schmidt pres. by H.-J. Steffens Software Engineering SS 2009Folie 1 Objektmodellierung Objekte und Klassen Ein Objekt ist ein Exemplar.
Eignung von Grammatik-basiertem Layout für grafische Programmiersprachen Seminar Layout-Algorithmen für Graphen Institut für Informatik Christian-Albrechts.
Übersicht Motivation Konzeption Umsetzung/ Implementierung
Einführung in die Informatik für Naturwissenschaftler und Ingenieure
Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich.
Die Studienrichtung „Informatik der Ökosysteme“ (kurz: ökologische Informatik, „Ökoinformatik“) im Studiengang „Angewandte Informatik“ Dr. Reinhold.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Geoinformation I Lutz Plümer
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Strukturmodelle: Systematik, State of the Art bearbeitet von: Dr. Gerhard Buck-Sorlin Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben.
Fallstudie „intelligentes“ semantisches Netz
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
 Präsentation transkript:

Struktur-Funktions-Modelle von Pflanzen - Sommersemester 2012 - Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik 10. Vorlesung: 5. 7. 2012

zuletzt: Darstellung von Graphen in XL transitive Hülle Graphansicht in GroIMP, Graph-Layouts Queries im Graphen Die Software GroIMP (Übersicht)

als nächstes: sequenzieller und paralleler Ableitungsmodus in XL noch ein neuer Regeltyp: Instanzierungsregeln Beispiel für ein einfaches „reines Strukturmodell“ einer Pflanze (Gänseblümchen)

Ableitungsmodi in XL standardmäßig voreingestellt: parallele Regelanwendung (wie bei L-Systemen) Umschalten auf sequenzielle Anwendung (in jedem Schritt wird dann höchstens eine Regel angewandt): setDerivationMode(SEQUENTIAL_MODE) Rückschaltung auf parallel: setDerivationMode(PARALLEL_MODE) testen Sie das Beispiel sm09_b32.rgg

Ein weiterer Regeltyp in XL: Instanzierungsregeln Zweck: Ersetzung einzelner Module durch kompliziertere Strukturen, nur für die Darstellung (wie bei Interpretationsregeln) aber: es wird weniger abgespeichert (Einsparen von Speicherplatz) anders als bei Interpretationsregeln dürfen keine Turtle- Befehle mit Wirkung auf andere Knoten verwendet werden weitere Möglichkeit: „Replikator-Knoten“ zum Kopieren und Neuplatzieren von ganzen Strukturen

Instanzierungsregeln: Syntax kein neuer Regelpfeil Angabe der Instanzierungsregel direkt in der Moduldeklaration module A ==> B C D; ersetzt (instanziert) überall A durch B C D Beispiel sm09_b43.rgg

const int multiply = EDGE_0; /* selbstdefinierter Kantentyp */ module Tree ==> F(20, 1) [ M(-8) RU(45) F(6, 0.8) Sphere(1) ] [ M(-5) RU(-45) F(4, 0.6) Sphere(1) ] Sphere(2); module Replicator ==> [ getFirst(multiply) ] Translate(10, 0, 0) [ getFirst(multiply) ]; public void run1() [ Axiom ==> F(2, 6) P(10) Tree; ] public void run2() Axiom ==> F(2, 6) P(10) Replicator -multiply-> Tree; Tree wird mit der roten Struktur instanziert es wird eingefügt, was an der „multiply“-Kante hängt

weiteres Beispiel einer Anwendung eines Multiplikator-Knotens mit Instanzierungsregel: (Henke 2006)

Beispiel eines reinen Strukturmodells (ohne Entwicklung) für eine „einfache“ Pflanze: das Gänseblümchen (Bellis perennis) (nach K. Smoleňová und R. Hemmerling) Hier behandelte Schritte: - Datensammlung - Aufbau der Topologie der Pflanze im Modell - Texturierung - weitere Verbesserungen

Ergebnisse der Datensammlung und der Wissens-Recherche über die Pflanze: - kleine, runde oder löffelartige, immergrüne Blätter, 2 bis 5 cm lang, nah dem Boden als Rosette angeordnet - blattloser Stamm, 2 bis 10 cm lang - grüne Kelchblätter in zwei Zeilen, gewöhnlich 13 Stück - kegelförmige Blütenbasis, 6 mm lang, 5 mm Durchmesser - Korbblüte mit weißen Blütenblättern (Zungenblüten), 11 mm lang, 2 mm breit - kleine gelbe Röhrenblüten (75 - 125) im Inneren des Blütenstandes - kleines, vertikales Rhizom mit faserigen Wurzeln

Definition der (vereinfachten) Bestandteile der Pflanze für das Modell (beschränkt auf den oberirdischen Teil): Ergänzen der entsprechenden Parameter dieser Module:

Zuordung einer Form zu einem Modul Zwei Möglichkeiten: - Vererbung von einem (vordefinierten) Geometrieobjekt - Verwendung einer Instanzierungsregel

Erzeugung der Blätter nahe dem Boden:

Erzeugung des Stammes: Erzeugung der Kelchblätter des Blütenstandes:

Erzeugung der Blütenbasis (= Blütenstandsboden): Erzeugung der weißen Zungenblüten:

Erzeugung der gelben Röhrenblüten: Ergebnis bisher:

Verbesserung des visuellen Realismus durch Texturen (Quellen: Digitalkamera, Scanner, existierende Fotos aus dem Web oder aus botanischen Lehrbüchern) Vorverarbeitung der Texturen: - Anpassen der Helligkeit - Ausschneiden, den Hintergrund transparent machen - Größenanpassung (Vermeidung zu speicherplatzintensiver Texturen) Beispiele für vorbereitete Gänseblümchen-Texturen:

Interaktiver Import der Texturen nach GroIMP (vgl. Kapitel 5)

Anwendung der Texturen auf ein Objekt (hier: ein Blatt): (“leaf“ ist ein Standardmodul mit rechteckiger Geometrie) Ergebnis nach Texturierung:

Anpassen von Parametern und Einbau von Variabilität nächste Schritte: Anpassen von Parametern und Einbau von Variabilität (in der Regel ein aufwändiger Prozess!) realistischerer Eindruck von der Pflanze durch Einbeziehen von Zufallsvariablen bei Festlegung der Maße Analyse der Modellergebnisse und anschließende Anpassung an die Daten von realen Pflanzen, bis das Modell „stimmt“ statistische Analyse der Daten von realen Pflanzen (Mittelwerte, Varianzen) und Verwendung der Ergebnisse für stochastische Parameter im Modell

Ergebnis mit Zufallsvariationen:

Mängel: Das Gänseblümchen-Modell ist ein reines Strukturmodell, also ohne Prozesse wie Photosynthese, Atmung, Wachstum etc., es beinhaltet keine Entwicklung (Wachstum, Erzeugung der Organe, Seneszenz...) Nächster Schritt ist somit: Entwicklung eines einfachen Funktions-Struktur-Modells (FSPM) mit Regeln, die die Ontogenese der Pflanze beschreiben