? Kernphysik Becquerel (1896):

Slides:



Advertisements
Ähnliche Präsentationen
Vortrag: Kernfusion Ernst-Mach-Gymnasium, 14.Juli 2010.
Advertisements

Bild 1.
Bild 1.
Ein einfaches Atommodell
Konzepte II (SS 2007; D. Rehder) Teil (2):
7.2 Ionisierende Strahlung
Der radioaktive Zerfall
MP-41 Teil 2: Physik exotischer Kerne
Radioaktivität Bei radioaktiver Strahlung und bei Kernreaktionen werden die folgendenTeilchen emittiert: α-Teilchen = 4He-Kerne β--Teilchen = Elektronen.
Das Erstaunen des Herrn Becquerel und die Folgen
Hintergrund zur Radioaktivität
Die Welt des ganz Kleinen
Quark- und Gluonstruktur von Hadronen
Der Aufbau eines Atomkerns
Struktur der Materie Aufbau der Natur aus „Ur-Elementen“: Wasser, Luft, Feuer, Erde Leukipp und Demokrit ( v. Chr.): Aufbau aus wenigen „kleinsten,
? Kernphysik Becquerel (1896):
Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch.
Haben Sie heute schon trainiert?
Kernfusion in der Sonne
Licht Was ist das? Woher kommt das.
Die historische Entwicklung des Atommodells
Wiederholung: Teil 10 Wilhelm - Heinrich - Riehl - Kolleg
Teil 9 Sie brauchen nicht schreiben. Es liegt ein Skript vor!
zusammengestellt von den III Kursen Atombau Radioaktivität Spaltung Diverses
Atome.
GESCHICHTE DES PERIODENSYSTEMS
p+, 118n0 71p+, 104n0 59p+, 82n0 Neutronenzahl 33p+, 42n0 9p+,
Radioaktivität begleitet uns unser ganzes Leben
Radioaktivität begleitet uns unser ganzes Leben
RADIOAKTIVITÄT WO KOMMT SIE HER?.
Atome und Periodensystem.
Atom- und Festkörperphysik 3/0/0 WS, 3/0/0 SS
Elementarteilchen + Abstossung Anziehung + – – + –
Elementarteilchen + Abstossung Anziehung + – – + –
Der Atombau Atom- hülle Bezeichnungen:
POCKET TEACHER Physik Chemie Formelknacker
Die wichtigsten stabilen Teilchen
Radioaktive Strahlung
Radioaktivität Radioaktivität, Alphastrahlen, Betastrahlen und Gammastrahlen Sultan Eryilmaz.
Radioaktivität.
c) Bedeutung der Zahlen im PSE
Bild 1.
Wechselwirkungen von Strahlung mit Materie
Kernspaltung Thomas Rieger.
Was ist Radioaktivität und, kann sie mir schaden?
Atomphysik Lösungen.
Atomphysik Lösungen.
Atomphysik Lösungen Kapitel
Kernphysik.
Kernphysik.
Die Geschichte der Vorstellung vom Kleinsten
Der Atomkern und das Periodensystem. Atom Kleinstes auf chemische Weise nicht weiter teilbares Teilchen Besteht aus dem Atomkern und der Atomhülle Im.
Eigenschaften der Kerne Föderalagentur für Ausbildung der RF «Nationale Polytechnische Forschungsuniversität Tomsk» Institut für Physik und Technik Tomsk.
Atombau & Elektronenverteilung © Matthias Ritter – 02/2002.
Radioaktivität Entgegen weitläufiger (durch Simpsons geprägte) Meinung
Physik Grundkurs MSS 13 Simon Geisser Inhaltsverzeichnis  Definition  Geschichtliche Entwicklung  Die Zerfallsarten der Kernspaltung a)
Strahlung Arten und Auswirkungen. Themen ● Alpha-Strahlung (α) ● Strahlung ● Zerfall ● Entdeckung ● Verwendung ● Beta-Strahlung (β) ● Entstehung ● Wechselwirkung.
Atombau und Radioaktivität
? Kernphysik Becquerel (1896):
Erste Experimente zur Untersuchung der inneren Struktur der Materie
Ernest Rutherford Werdegang Verschiedene Strahlungen Nachweis
Atomare Auflösung einer Galliumarsenid-Oberfläche (Rasterelektronenmikroskopie)
Das Atommodell von Rutherford
Der Atomkern Alphazerfall Die Massen der Atome und ihrer Kerne
Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch.
Atomaufbau: radioaktive Stoffe
Radioaktivität Radioaktivität, Alphastrahlen, Betastrahlen und Gammastrahlen Sultan Eryilmaz.
Chemische und mikrobiologische Grundlagen der Wassertechnologie
Erste Experimente zur Untersuchung der inneren Struktur der Materie
Atommodell Heisenberg, Schrödinger: Elektronen haben Aufenthaltswahrscheinlichkeiten (keine Bahnen) Demokrit: Atome sind unteilbar Bohr: Elektronen haben.
 Präsentation transkript:

? Kernphysik Becquerel (1896): „Uranstrahlen“ schwärzen eine Photoplatte durch Papier (wie Röntgenstrahlen, 1895) Rutherford (1897): „Uranstrahlen“ zeigen a- und b-Strahlen Villard (1900): Radium zeigt a- und g-Strahlung ? Was sind diese Strahlen ? nicht aus chemischer Reaktion Elementumwandlung frühe Vermutung: Edelgase entstehen ! 1

Kernphysik Rutherford (1903-1911): Ernest Rutherford (1871-1938) Rutherford (1903-1911): Wechselwirkung der a-, b- und g-Strahlung mit elektromagnetischen Feldern. Spezifische Ladung q/m: b-Strahlen werden wie Elektronen abgelenkt. a-Strahlung haben positive Ladung bei kleinem q/m 2

Atommodell nach Rutherford Haben die Atomkerne eine innere Struktur ? Die positive Ladung und fast die gesamte Masse der Atome ist in einem Atomkern konzentriert. Atomkernradius ca. 10-15 m entspricht 1 / 50.000 des Atomradius („Kirschkern im Eifelturm“) - die Kernladung ist ein ganzzahliges Vielfaches einer positiven Elementarladung Anzahl der im Kern enthaltenen Elementarladungen ist die Kernladungszahl ( = Elektronenzahl, Ordnungszahl im Periodensystem) „Planetensystem“: Elektronen umkreisen den Atomkern Haben die Atomkerne eine innere Struktur ? Atomkerne bestehen aus a-Teilchen (Heliumkerne) und Elektronen (1 Heliumkern = 4 Protonen + 2 Elektronen) E. Rutherford, Nature 109, 584 (1922) 3

Haben die Atomkerne eine innere Struktur ? Struktur der Atomkerne Haben die Atomkerne eine innere Struktur ? Chadwick (1932) a-Teichen Neutron Beryllium sendet Strahlung aus, die durch die Bleiplatte geht, aber alleine keine große Ionisationswirkung hat. Ionisation steigt mit Paraffin (viele Protonen) stark an elast. Stöße schleudern Protonen aus dem Paraffin (starke Ionisation) neue Strahlung hat keine Ladung, aber eine Masse ähnlich der Protonenmasse Neutron 4

Struktur der Atomkerne Protonen und Neutronen bauen den Atomkern auf (Nukleonen). Problem: Massenanziehung der Nukleonen nach Newton‘s Gravitation ist um Größenordnungen geringer als elektrostatische Abstoßung: „starke Wechselwirkung“ Kennzeichen der Kraft: - kurze Reichweite (nur im Kernbereich) - sehr stark (überwiegt deutlich elektrostatische Abstoßung) - Struktur im Kern: nicht alle Kerne sind gleich “hart“: („magische Zahlen“) 5

Struktur der Atomkerne Protonen und Neutronen bauen den Atomkern auf (Nukleonen). Das Diagramm zeigt die Bindungsenergie/Nukleon für natürliche Elemente mit steigender Massenzahl A = Z + #Neutronen. aus „Newton Physik 10 I-III“, Oldenbourg 2006

Kernspaltung Stabilste Kerne im Bereich von Eisen: Durch Abstoßung von radioaktiven Teilen werden große Kerne, z.B. Uran, schrittweise in stabile Kerne hin umgewandelt: Natürliche Zerfallsreihe: 23 5 U  ….  207Pb (T1/2 = 1 Mio. a) Künstliche Zerfallsreihe: Die Bindungsenergie wird auf einmal frei; dieser Zerfall muss aber von außen angestoßen werden: künstliche Radioaktivität Bei diesem Zerfall entstehen überschüssige Neutronen, die einen weiteren Zerfall auslösen können: „Kettenreaktion“: 235 U + 1n  89 Kr + 144 Ba + 3* 1n 7

Kernfusion Relatives Maximum bei Helium: Eb = 1,2*10-12 J/Nukleon Folglich wird bei der Verschmelzung von Wasserstoffkernen zu einem 4He-Kern 4,8*10-12 J freigesetzt; D.h. für 1 Mol He (4g !): NA * 4,8*10-12 J = 28,8*1011 J ( = 8*105 kWh) (ca. Arbeit pro Monat im neuen Kraftwerk LEW Hochablaß) Problem: Die positiven Kerne müssen ihre elektrostatische Abstoßung überwinden: Sonne: Hohe Bewegungsenergie durch innere Energie in der Sonne von T = 108 K Wasserstoffbombe: Hohe Bewegungsenergie durch Kompression mittels einer Uranbombe Fusionsreaktor: Kontrolle von T = 108 K ???? 8

Kernfusion Vergleich zwischen den Technologien zur Energiegewinnung: Bezogen auf die gleiche Masse an Brennstoff verhalten sich die freigesetzten Energien Kohleverbrennung 1 Kernspaltung 3 Mio Kernfusion 10 Mio 9