Innere Energie Wagen stößt gegen die Wand

Slides:



Advertisements
Ähnliche Präsentationen
Kapitel 5: Wärmelehre 5.1 Temperatur und Wärme.
Advertisements

Transportvorgänge in Gasen
Wochenstundenzahl / Schulaufgabenzahl
Wärme als eine Energieform
Aggregatzustände.
Kapitel 5: Wärmelehre 5.1 Temperatur und Wärme.
3. Wärmelehre Materiemenge stellt ein Ensemble von sehr vielen Teilchen dar Mechanisches Verhalten jedes einzelnen Teilchens (Flugbahn) nicht bekannt und.
Mechanik, Wärmelehre, Elektrizitätslehre, physikalische Größen
Temperatur, Druck im mikroskopischen Bild
Kinetische Energie Elektrische Energie wird zugeführt, um die Geschwindigkeit zu erhöhen (Beschleunigungsarbeit) Kinetische Energie Kinetik=Lehre von der.
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Geipel / Reusch (2005): Physik 8I
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße (Energieübertrag.
Temperatur.
Aggregatszustand Aggregation: Anordnung von Teilchen in einem Gegenstand. (von lat. aggregare anhäufen, zusammensetzen) 3 Grundprinzipien der Teilchenanordnung:
Wärme = Temperatur? Jeder Gegenstand hat eine bestimmte Temperatur:
Innere Energie Wagen stößt gegen die Wand
Kraftwandler: Hebel Zweiseitiger Hebel Eine große Kraft nahe der Drehachse kann durch eine kleinere Kraft auf der anderen Hebelseite aufgehoben werden,
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße - mittlere.
Energieformen und Energiequellen
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Die Hauptsätze der Thermodynamik
Versuche 1. Versuch: Eisenstab.
Mit Energie vernünftig umgehen
Kapitel 7: Stichworte Zustandsgröße, Zustandsgleichung
WÄRMELEHRE Wärmeumwandlung
Energie in Form von Wärme
Heißluftballon Der aufsteigende Heißluftballon nutzt Wärme, um Hubarbeit zu verrichten Das Volumen des Ballons beträgt etwa 4000m3. Ein Teil der erwärmten.
Energieeinheiten SI-Einheit: Joule [ J ] 1 J = 1 Nm (Newtonmeter) 1 J = 1 Ws (Wattsekunde) Ws = 1 Wh (Wattstunde) 1h hat 60 min, 1min hat 60s.
...warum ein allein gelassenes System immer unaufgeräumter wird...
Die kinetische Gastheorie
Wdh. Letzte Stunde 1.Hauptsatz
Arbeitsfluids Fluid besteht aus Atomen/Molekülen Bild = Wasser flüssig
Fachdidaktikseminar WS 05/06 Statistische Mechanik- vom „Einteilchen- zum Vielteilchensystem“ Manuel Fliri.
Feststoff Flüssigkeit Gas
Erhaltung von Energie, Impuls und Drehimpuls
Hub-Arbeit und kinetische Energie, Energieerhaltung
Hydro- und Aerodynamik
Potentiale bei Diffusion
Arbeit, Energie, Energieerhaltung, Leistung
Ein Thema der Physik des „Massenpunktes“ und der Photonen
Wirkung der Temperatur auf physikalische Eigenschaften
Brownsche Molekularbewegung und Diffusion
Ein Thema der Physik des „Massenpunktes“ und der Photonen
Beobachtung Erklärung im Modell
Feststoff Flüssigkeit Gas
1. Aggregatzustandsänderungen
Lösungen zu Seite 3.
Energie.
Onsagersche Gleichung. Energetische Beziehungen
Unterrichtsmaterialien
Wärme- und Strömungstechnik II
Hauptsätze Wärmelehre
Aggregatzustände Ulla Lehmann.
Instrumentenpraktikum
Elektronik Lösungen.
Wärmelehre Lösungen.
Wärmelehre Lösungen.
Kapitel 5: Wärmelehre 5.1 Temperatur und Wärme.
3 Die chemische Reaktion 3.5 Das chemische Gleichgewicht
von Fuchs Engelbert Fachdidaktik
Der Energiebegriff Im 18. Jahrhundert glaubte man noch, dass es sich bei Wärme um einen Stoff handelt (sog. Caloricum) Dieser Stoff dringt beim Erhitzen.
Siedepunkt Luft Dampfblasen Wasser Wärme
Wärmelehre Einige Erläuterungen.
Teilchenmodell und Aggregatzustände
3.2. Potentielle und kinetische Energie
Thermische Energie und Wärme
Fachdidaktische Übungen Stefan Heusler. Kühlschrank Sehr gute Materialien zum Thema Thermodynamik finden Sie auf der Seite
Temperatur und Teilchenbewegung
Innere Energie Wagen stößt gegen die Wand
 Präsentation transkript:

Innere Energie Wagen stößt gegen die Wand prallt elastisch von der Wand zurück Energieform bleibt kinetische Energie Wagen stößt gegen die Wand bleibt vor der Wand stehen kinetische Energie wird in innere Energie umgewandelt (Federschwingungen) Thermodynamik 1 1

Innere Energie Innere Energie = kinetische Energie + potenzielle Energie Bewegung der Teilchen Anordnung der Teilchen Erhöhung der inneren Energie: durch Zufuhr mechanischer Arbeit (z.B. Reibungs-, Ausdehnungs-, Kompressionsarbeit) = Arbeit W durch Übertragung von ungeordneter Teilchenbewegung von einem Körper auf einen anderen übergeht aufgrund eines Temperaturgefälles = Wärme(menge) Q. Thermodynamik

Temperaturerhöhung im Teilchenmodell (kinetisches Wärmemodell) die Teilchen bewegen sich umso schneller (Federschwingungen), je höher die Temperatur eines Gegenstandes ist. Wärme kann übertragen werden ! die Teilchen benötigen für die schnellere Bewegung mehr Platz (Volumenausdehnung). mechanische Arbeit kann verrichtet werden ! Ausdehnung von Festkörpern: Gitterschwingungen (näherungsweise harmonisch) Ausdehnung von Flüssigkeiten: Zitterbewegungen (kaum Gleichgewichtslagen) Ausdehnung von Gasen: freie Weglängen nehmen zu (keine Gleichgewichtslagen) Thermodynamik

Beweise für das kinetische Wärmemodell Robert Brown (1773 - 1858) Brownsche Molekularbewegung: Sie ist nach dem schottischen Botaniker Robert Brown benannt, der sie 1827 bei seinen Untersuchungen von Pollenkörnern als unregelmäßige Zick-Zack-Bewegung unter dem Lichtmikroskop beobachtete. Original-Mikroskop von Brown Brown erkannte, dass die unter dem Mikroskop sichtbaren Partikel ständig von den viel kleineren und daher unsichtbaren Molekülen der Flüssigkeit angestoßen wurden. Abb.: Robert Brown, Original-Mikroskop: Internetquelle Leifi http://leifi.physik.uni-muenchen.de/web_ph09/versuche/07brown/brown.htm Thermodynamik

Beweise für das kinetische Wärmemodell Diffusion: selbständiges Durchmischen von Teilchen verschiedener Stoffe aufgrund der Teilchenbewegung Osmose: Diffusion durch eine semipermeable Membran Thermodynamik

Spezifische Wärme Die innere Energie eines Gegenstandes ist abhängig von seinen Struktureigenschaften: - Masse: Menge des Stoffes, auf den sich die Energie verteilt - spezifische Wärmekapazität: Eigenschaft des Stoffes, Wärme anzunehmen/abzugeben Quantifizierung mit Hilfe bekannter Energiemengen über die Energieerhaltung: Q = WReibung , (mechanisches Wärmeäquivalent) Q = Welektr = U * I * t , (elektrisches Wämeäquivalent) Messung von Q mittels verschiedene Massen: Q / m ~ verschiedene Substanzen: Q / (m ) ~ c Q= m c ΔEtherm Abb.: Zusammenhang zwischen zugeführter Energie und Temperatur (vgl. Hörter, S. 59)

1. Hauptsatz der Wärmelehre Umformulierung des Energieerhaltungssatzes im Wärmemodell: „Die einem System zugeführte Wärmemenge Q ist gleich der vom System verrichteten Arbeit W und der Änderung seiner inneren Energie ΔU“ Umgebung System ΔU WE > 0 WA < 0 QE > 0 QA < 0 Q = W + ΔU Beispiel: Mischung von Flüssigkeiten Volumenänderung wird vernachlässigt: ΔU = Q wärmere Flüssigkeit gibt Wärme ab: - Q = - m * c * kältere Flüssigkeit nimmt Wärme auf: +Q = m * c * Energieerhaltung: - Q + Q = 0 (Annahme: abgeschlossenes System)

2. Hauptsatz der Wärmelehre Gemäß dem 1.Hauptsatz wäre der Mischungsvorgang auch umkehrbar: eine Wassermenge einer bestimmten Temperatur trennt sich in zwei Teilmengen unterschiedlicher Temperatur (kältere und wärmere Bereiche); die Summe der beiden inneren Energien der Teilmengen entspricht der ursprünglichen Gesamtwärme. Dieser Vorgang wird in der Natur nie beobachtet. (Es müßte eine Wärmemenge Q in den wärmeren Bereich übertragen werden) Der 2. Hauptsatz ist ein empirischer Satz, der die Natur beschreibt: „Die Wärmemenge Q wird stets vom wärmeren zum kälteren Gegenstand abgegeben.“ In der Natur existieren nur Prozesse, die selbständig in diese eine Richtung ablaufen. Sie sind unumkehrbar (irreversibel).

Unmöglichkeit des Perpetuum Mobile Eine Konsequenz aus 2. und 1.Hauptsatz ist, daß Wärme nur dann in Arbeit überführt werden kann, wenn a) eine Wärmemenge Q von dem wärmeren auf den kälteren Gegenstand übergeht und die inneren Energien sich ändern (ΔU ungleich Null). Also ist W ungleich Q, wegen Q = W + ΔU. Wärme ist nicht vollständig in Arbeit überführbar. Der kältere Gegenstand erwärmt sich. Diese Erwärmung ist aber nicht vollständig nutzbar! Konsequenz: In einem abgeschlossenen System nimmt die Wärme- übertragung zu, die mechanisch nutzbare Arbeit ab. Ein „Perpetuum Mobile“ muss deshalb zur Ruhe kommen, wenn seine Bewegungsenergie vollständig in innere Energie umgewandelt ist.

Wärmetransport Wärmeleitung In festen Körpern oder nicht bewegten Flüssigkeiten und Gasen bezeich- net man die Übertragung der Bewegungsenergie von einem Teilchen auf ein Nachbarteilchen als Wärmeleitung. z.B. Festkörper: Energietransport über Gitter- schwingungen der beteiligten Teilchen (Phononen) Abb.: Wärmeleitung (Hörter, S. 25) Die Wärmeleitung ist so lange zu beobachten, bis überall die gleiche Temperatur herrscht. Thermodynamik

Wärmetransport 2. Wärmeströmung (Konvektion) Wird einem flüssigen oder gasförmigen Körper Wärme zugeführt, steigt die Temperatur und die Teilchen bewegen sich schneller. Der erwärmte Bereich dehnt sich aus, sein Volumen vergrößert sich und seine Dichte nimmt ab. Schnellere Teilchen haben genug Energie, um im Gravitationsfeld auch nach oben entweichen zu können, langsamere werden hingegen nach unten gezogen: unten entsteht ein Druck und oben ein Sog, in Folge davon die Konvektion.  Thermische Zirkulation (Wetter, Warmwasserheizung ...) Abb.: Wärmeleitung (Hörter, S. 21)

Wärmetransport 3. Wärmestrahlung Strahlung ist eine Form von Energie. Strahlungsanteile mit Wellenlängen größer als sichtbares Licht empfinden wir als Wärme, deshalb wird diese „infrarote“ Strahlung auch als Wärmestrahlung bezeichnet. Im Prinzip kann jede absorbierte Strahlung erwärmen: Mikrowelle, Handy (Gefahr für die Hornhaut des Auges) Abb.: Verteilung der Sonneneinstrahlung (Hörter, S. 30) Im Unterschied zu Wärmeleitung und Wärme- strömung kann sich Wärmestrahlung auch im Vakuum ausbreiten. Thermodynamik