UMTS Air Interface Overview

Slides:



Advertisements
Ähnliche Präsentationen
Cadastre for the 21st Century – The German Way
Advertisements

Service Oriented Architectures for Remote Instrumentation
An new European Power Network: Student Power
Z-Transformation Die bilaterale Z-Transformation eines Signals x[n] ist die formale Reihe X(z): wobei n alle ganzen Zahlen durchläuft und z, im Allgemeinen,
PPTmaster_BRC_ pot Rexroth Inline compact I/O technology in your control cabinet SERCOS III Components Abteilung; Vor- und Nachname.
R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
The difference between kein and nicht.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Fakultät für informatik informatik 12 technische universität dortmund Optimizations Peter Marwedel TU Dortmund Informatik 12 Germany 2009/01/17 Graphics:
Peter Marwedel TU Dortmund, Informatik 12
Fakultät für informatik informatik 12 technische universität dortmund Hardware/Software Partitioning Peter Marwedel Informatik 12 TU Dortmund Germany Chapter.
Telling Time in German Deutsch 1 Part 1 Time in German There are two ways to tell time in German. There are two ways to tell time in German. Standard.
Wenn…… the conditional. Using the conditional tense The conditional tense is used to talk about something that happens only after something else happened.
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
Wozu die Autokorrelationsfunktion?
Hier wird Wissen Wirklichkeit Computer Architecture – Part 10 – page 1 of 31 – Prof. Dr. Uwe Brinkschulte, Prof. Dr. Klaus Waldschmidt Part 10 Thread and.
Thomas Herrmann Software - Ergonomie bei interaktiven Medien Step 6: Ein/ Ausgabe Instrumente (Device-based controls) Trackball. Joystick.
CCNA Exploration Network Fundamentals
Seminar Telematiksysteme für Fernwartung und Ferndiagnose Basic Concepts in Control Theory MSc. Lei Ma 22 April, 2004.
Methods Fuzzy- Logic enables the modeling of rule based knowledge by the use of fuzzy criteria instead of exact measurement values or threshold values.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Grundlagen der Nachrichtentechnik
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Laurie Clarcq The purpose of language, used in communication, is to create a picture in the mind and/or the heart of another.
die Zeiten (The Tenses) das Aktiv (Active Voice)
Kapitel 4: Die Schule Deutsch 1
Die Zeit (TIME) Germans are on military time which is 1-24
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Sanjay Patil Standards Architect – SAP AG April 2008
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
BAS5SE | Fachhochschule Hagenberg | Daniel Khan | S SPR5 MVC Plugin Development SPR6P.
Ich möchte ein Eisberg sein. Last time … 3 icebergs Triangels Unique connections Ich möchte ein Eisberg sein
Meine Schulfächer.
bei in seit mit auf hinter von nach aus zu für vor.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Verben Wiederholung Deutsch III Notizen.
Impairments in Polarization-Multiplexed DWDM Channels due to Cross- Polarization Modulation Marcus Winter Christian-Alexander Bunge Klaus Petermann Hochfrequenztechnik-Photonik.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
Ein Projekt des Technischen Jugendfreizeit- und Bildungsvereins (tjfbv) e.V. kommunizieren.de Blended Learning for people with disabilities.
The most obvious or direct use of auch is to mean also. Ich möchte auch Gitarre lernen. Auch ich möchte Gitarre lernen. I would like to learn Guitar. Someone.
The cheating verbs… (modal verbs). Modal Verb Chart wollenmüssenkönnenmögensollendürfenmöchten Ichwillmusskannmagsolldarfmöchte Duwillstmusstkannstmagstsollstdarfstmöchtest.
Cross-Polarization Modulation in DWDM Systems
Feste und Feiertage Treffpunkt Deutsch Sixth Edition.
Relativpronomen / Relativsätze:
By: Jade Bowerman. German numbers are quite a bit like our own. You start with one through ten and then you add 20, 30, 40 or 50 to them. For time you.
Time Expressions with Dative Von: Payton Knuckles.
3rd Review, Vienna, 16th of April 1999 SIT-MOON ESPRIT Project Nr Siemens AG Österreich Robotiker Technische Universität Wien Politecnico di Milano.
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Relativpronomen / Relativsätze:
AVL-Trees (according to Adelson-Velskii & Landis, 1962) In normal search trees, the complexity of find, insert and delete operations in search.
Sentence Structure Subject and verb are always together. Subject and verb are always together. Subject and verb must agree Subject and verb must agree.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Vorlesung Knowledge Discovery - Institut AIFB Tempus fugit Towards.
German Word Order explained!
DEUTSCHE VERBEN I. REGULAR VERBS.
Separable Verbs Turn to page R22 in your German One Book R22 is in the back of the book There are examples at the top of the page.
1 Intern | ST-IN/PRM-EU | | © Robert Bosch GmbH Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung,
Launch ON Global.vi System ID object name classname Services to suscribe Observer Control Ref vi-path Service name Step 1 : Objects register to the Global.vi´s,
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
THE PERFECT TENSE IN GERMAN
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
EN/FAD Ericsson GmbH EDD/ Information im 21. Jahrundert muss Erwünscht Relevant Erreichbar Schnell Kostenlos!?
How to use and facilitate an OptionFinder Audience Response System.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
TUM in CrossGrid Role and Contribution Fakultät für Informatik der Technischen Universität München Informatik X: Rechnertechnik und Rechnerorganisation.
By Martin L. Loeffler.  The basic sentence has a subject and a verb.  The subject and verb need to be together.  The subject and verb need to agree.
Data Mining Spectral Clustering Junli Zhu SS 2005.
Institut für Nachrichtentechnik U. Reimers Technische Universität Braunschweig The MultiMedia Home Platform (MHP): Hype or Reality ?
 Präsentation transkript:

UMTS Air Interface Overview Albrecht Kunz Hochschule für Technik und Wirtschaft des Saarlandes Saarbrücken, 04. Juli 2005

All-IP Based Multimedia Terminals The Ultimate Goal If I would have had a mobile multimedia terminal, I could: - look an the e-map where I am - send an email for some help - call my wife and kids and send them a picture of this beautiful location - get the latest news from the stockmarket while waiting. It would be great However I don‘t have a tool like that and I‘m lost. I‘m in trouble

Keller 22.976 Support of push service 23.974

3GPP Technical Specification Groups Keller 3GPP Technical Specification Groups 22.976 Support of push service 23.974

Overview Motivation UMTS key characteristics CDMA Basics Multipath reception / Rake receiver TX/RX baseband processing Transport & physical channels Frame structure Handover Power control

UMTS Key Characteristics

Quality of Service (QoS) - End to End delay «Hi ! How are you ?» «Hi ! How... T small delays (10-20 ms) are not annoying for users delay < 200 to 400 ms, the effectiveness of the interaction is lower but can be still acceptable delay is > 400 ms, interactive voice communication is quite difficult

UMTS Terrestrial Radio Access (UTRA) TDD mode FDD mode Time Division Duplex based on Delta Concept (TD-CDMA) Frequency Division Duplex based on Alpha Concept (DS-CDMA)

Air Interface Characteristics time time Energy, Code Energy, Code Frequency Frequency TDD mode FDD mode

UMTS frequency bands 1900 1950 2000 2050 2100 2150 2200 1 2 4 1 2' 4 [MHz] 1 UMTS TDD (1900MHz-1920MHz,2010MHz-2025MHz) 2 UMTS uplink (FDD) (1920MHz-1980MHz) 2' UMTS downlink (FDD) (2110MHz-2170MHz) 4 UMTS Satellite (1980MHz-2010MHz, 2170MHz-2010MHz)

Frequency reuse R=1 R=3 R=4 R=7

Multiple Access FDMA TDMA CDMA P t f P t f P t f

Despreading P t f P t f

Multipath Propagation Environment Channel Impulse response  h(t,)

Channel model

Rake receiver

UMTS – Prinzip der Bandspreiztechnik Verwendung orthogonaler Spreizcodes, um die Nutzer in der Zelle zu separieren

Verwendung orthogonaler Spreizcodes: Spreizvorgang Verwendete Modulationsart ist QPSK (downlink, d.h. Kommunikation von der Basisstation zur Mobilstation Codes unterschiedlicher Spreizfaktoren (Spreading Factor, SF) können verwendet werden Die okkupierte Bandbreite ist nach dem Spreizen SF-mal so groß Die spektrale Leistungsdichte wird durch den Spreizvorgang auf 1/SF reduziert

Entspreizvorgang: Entspreizen durch Multiplikation mit der gleichen Spreizfunktion, mit der gesendet wurde Anwendung eines Korrelators oder Matched Filters: Korrelator: Integration von SF Chips, bei Verwendung des richtigen Codes (phasensynchron zum Sender) tritt Korrelationsspitze auf Matched filter mit Entspreizsequenz (-t): Korrelationsspitze tritt auf bei vollständiger Überlappung von gesendeter Spreizsequenz und multiplizierter Entspreizsequenz Gleichheit der Sequenzen => +1*+1=1 und –1*-1=1 maximales Integrationsergebnis (Korrelationsspitze) ! Unterschiedliche Codes führen zu Nebenzipfeln, da die Codes nicht vollständig orthogonal sind (Bsp: siehe Gold-Codes)

Maximal LFSR Sequences = M-Sequences There are LFSRs with L memory elements and characteristic polynomial Q(x) that produce sequences with maximum period of length 2L-1. The sequences are called maximal LFSR sequences or m-sequences. The characteristic polynomials are called primitive polynomials. Tables of primitive polynomials exist (e.g. in Peterson/Weldon,Error Correcting Codes,1972). Example: Degree 8 Q(x): 561 octal

Correlation Properties of M-Sequences The out of phase values of the PACF of m-sequences (after mapping to a bipolar sequence) are all -1: Example: m-sequence of length 15

Decimation of M-Sequences Definition (decimation): Given a m-sequence bn, generate a new sequence cn by taking every q-th element form bn. Then cn is said to be a decimation by q of bn. If bn is generated by ma(x) with roots ai then cn is generated by maq(x) with roots aiq. If gcd(q, N) = 1 then cn is also a m-sequence. Example: N = 31 is prime therefore all decimations give m-sequences (some of which may be identical !!)

Crosscorrelation Properties of Gold-Sequences If L is not 0 mod 4 then pairs of m-sequences exist with three-valued crosscorrelation functions (CCF) these three values are: -1, -t(L), t(L)-2 its called preferred pair !

Construction of Gold Codes A set of Gold codes of length N is generated based on a preferred pair of m-sequences of the same length. The second m-sequence is generated from the first by decimation with the factor t(L). The set size is N+2 = 2L+1. N different sequences in the set are generated by the binary addition of sequence 1 with all cyclic shifts of sequence 2. The original sequences are added to the set giving a set size of N+2. LFSR for m-sequence 2 m-sequence 1 Gold code initial value determines output sequence

Correlation properties of Gold Codes Gold codes have three valued out of phase periodic autocorrelation function and even periodic crosscorrelation function: Example: Gold Codes of length N=31, L = 5, with Generator polynomials g1(x) = x5 + x2 + 1 and g2(x) = x5 + x4 + x2 + x + 1 The three out of phase correlation values are -1, -9 and 7

Segments of length 38460 of Gold codes of length 218-1 are used in the WCDMA system (DL DPDCH/DPCCH). Example: Generator polynomials: g1(x) = x18 + x5 + x2 + x + 1 = m1(x) g2(x) = x18 + x17 + x13 + x12 + x9 + x8 + x6 + x + 1 = m1025(x) The second sequence is generated by decimating the first sequence with factor 2 (L+2)/2+1 = 1025.

Orthogonal Gold-Codes For many Gold-Codes or Gold like codes of length 2L -1 the crosscorrelation value at phase 0 is -1. If these codes are suitably extended by one chip the crosscorrelation value at phase 0 is 0. Therefore the codes are orthogonal !! g1(x) = x8 + x6 + x5 + x3 + 1 and g2(x) = x8 + x4 + x3 + x2 + 1 Original codes have length 255. Orthogonal codes have length 256 by addition of the chip -1. Out of phase correlation properties change due to the extension bit. Example: L = 8

Correlation Properties of Gold like Codes of length 255 -1

Correlation Properties of Orthogonal Gold-Codes of Length 256

Downlink scrambling code generator X 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 In 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Qn Y

spreading /modulation for downlink DPCH 16*2K kbps 3.84 Mcps cos(wt) p(t) IQ Mux DPDCH/DPCCH cch cscramb sin(wt) p(t) chiprate 3.84 Mcps pulse-shaping Root-Raised Cosine (RRC) with a=0.22 - QPSK modulation

spreading /modulation for uplink DPCH Anpassungsfaktor chiprate 3.84 Mcps pulse-shaping Root-Raised Cosine (RRC) with a=0.22 - Dual BPSK modulation

RRC Impulse Response 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 -0.05 -0.1 10 -0.05 -0.1 10 20 30 40 50 60 70 80

Mapping of Transport Channels Transport / Logical Channels Physical Channels BCH FACH PCH RACH CPCH DCH DSCH Common Pilot Channel Primary Common Control Physical Channel Secondary Common Control Physical Channel Physical Random Access Channel Physical Common Packet Channel Dedicated Physical Data Channel Dedicated Physical Control Channel Synchronization Channel Physical Downlink Shared Channel Page Indication Channel Acquisition Indication Channel Mapping of transport channels SCH consists of primary SCH and secondary SCH

Structure of Uplink Dedicated Channels DPDCH Data1 Ndata bits DPCCH Pilot NTFCI bits TFCI Ts=2560 chips, 10*2k bits, k=0..7 FBI NFBI bits TPC NTPC bits slot #0 slot #1 slot #i slot #14 frame #0 frame #1 frame #i frame #71 Tf=10 ms Tsuper=720 ms Structure of uplink DPDCH and DPCCH DPDCH and DPCCH on the same Layer 1 Connection generally have different spreading factors, SFDPDCH=4..256, SFDPCCH=256 length of TFCI field can be 0 for fixed rate services support of TFCI mandatory for UE

Structure of Downlink Dedicated Channels Pilot Npilotbits TFCI NTFCI bits TPC NTPC bits Data1 Ndata bits Data2 Ts=2560 chips, 10*2kbits, k=0..7 DPCCH DPDCH slot #0 slot #1 slot #i slot #14 frame #0 frame #1 frame #i frame #71 Tf=10 ms Tsuper=720 ms Structure of downlink dedicated channels SF is fixed, normally DTX is used length of TFCI field can be 0 for fixed rate services, determined by UTRAN support of TFCI mandatory for UE in closed loop transmit diversity the pilot symbol sent by different antennas are orthogonal

Multicode Downlink Transmission Pilot TFCI TPC DPCH1 Data1 Data2 Transmission Power DPCH2 Data1 Data2 DPCHn Data1 Data2 Multicode downlink transmission only on DPCH carries the DPCCH

Multicode Uplink Transmission DPDCH1 Data DPDCH2 Data DPDCHn Data Multicode uplink transmission there is only on DPCCH for each connection DPCCH Pilot TFCI FBI TPC

coding and multiplexing of Transport Channels (TC) The output after inner (intra-frame ) interleaving is typically mapped to one DPDCH. Only for highest bit rates the output is mapped to several DPDCHs (multi-code transmission)

Convolutional coder

Random Access Transmission P1 Pj P0 Preamble 4096 chips 10 ms, 38400 chips Message Random Access Transmission several preambles are transmitted with increasing power the preambles consists of 256 repetitions of a signature preamble transmission starts at random access slots If power is sufficient, BS sends an acquisition indication on AICH

RACH Message Part Data Control Pilot NTFCI bits TFCI Ndata bits slot #0 slot #1 slot #i slot #14 Ts=2560 chips, 10*2kbits, k=0..3 TRACH=10 ms RACH message part SFdata = 256,128,64,32 SFcontrol = 256 Npilot = 8, NTFCI = 2

Acquisition Indication Channel 4096 chips 1024 chips AI empty AS #0 AS #1 AS #i AS #14 2*Tf=20 ms Acquisition Indication Channel Access slots are separated by 5120 chips AIi corresponds to a signature i on PRACH or PCPCH Aii is 16 symbol long for PCPCH: AP-AICH, CD-AICH phase reference for AICH is the CPICH

Timing relationrelationship between preambles, AICH message One access slot t p-a p-m p-p Pre- amble Message part Acq. Ind. AICH access slots RX at UE PRACH access slots TX PRACH/AICH timing relation p-p  p-p,min. when AICH_Transmission_Timing is set to 0, then - p-p,min = 15360 chips (3 access slots) - p-a = 7680 chips - p-m = 15360 chips (3 access slots) when AICH_Transmission_Timing is set to 1, then - p-p,min = 20480 chips (4 access slots) - p-a = 12800 chips - p-m = 20480 chips (4 access slots)

Pre-defined symbol sequence Common Pilot Channel Pre-defined symbol sequence NTFCI bits Ts=2560 chips, 10*2kbits, k=0..7 slot #0 slot #1 slot #i slot #14 frame #0 frame #1 frame #i frame #71 Tf=10 ms Tsuper=720 ms Common pilot channel (CPICH) all symbols of the pre-defined symbol sequence are 1+j in case of transmit diversity a different symbol sequence is sent by antenna 2

Primary Common Pilot Channel Characteristics of the primary common pilot channel The same channelization code is always used Scrambled by the primary scrambling code One per cell Broadcast over entire cell The primary common pilot channel is the phase reference for SCH, P-CCPCH, AICH, PICH and the default phase reference for all other downlink physical channels. Primary Common Control Physical Channel fixed rate (30kbps,SF=256) carries BCH

Secondary Common Pilot Channels Characteristics of the secondary common pilot channel usage of an arbitrary channelization code of SF=256 scrambled by either the primary or secondary scrambling code zero, one or several per cell may be transmitted over only a part of the cell A secondary common pilot channel may be the phase reference for the secondary CCPCH and the downlink DPCH

Synchronization Channel Slot #0 Slot #1 Slot #14 Primary SCH acp acp acp Secondary SCH acsi,0 acsi,1 acsi,14 256 chips 2560 chips Synchronisation Channel primary and secondary SCH are modulated by a symbol a, a=+1 if P-CCPCH is STTD encoded, else a=-1 SCH is transmitted during TX off period of P-CCPCH P-SCH consists of the primary synchronization code (PSC), which length is 256 chips PSC is the same for every cell S-SCH consists of a sequence of 15 repeatedly transmitted codes (SSC) the sequence of the SSC determines, which of the code groups the cell belongs to 1 frame, 10 ms, 38400 chips

Physical Downlink Shared Channel Data Ndata bits Ts=2560 chips, 20*2kbits, k=0..6 slot #0 slot #1 slot #i slot #14 frame #0 frame #1 frame #i frame #71 Tf=10 ms Tsuper=720 ms Physical Downlink Shard Channel Shard by users based on code multiplexing DSCH always associated with a DCH PDSCH always associated with a downlink DPCH PDCH does not have layer 1 control information control information is transmitted on DPCCH A DSCH may be mapped on multiple parallel PDSCHs

Power control (1) Outer loop (closed loop) - adjust SIR target for inner loop Inner loop (closed loop) SIR controlled user oriented for fast Power Control Open loop for RACH

Power control (2)

Power control - inner loop adjust TX power of BS and MS to reduce near-far effect Example (DL): MS estimates received power SRX of DPCCH after Rake combining MS estimates downlink interference IDL SIRest = SRX / IDL generate transmit power control (TPC) command according to SIRest > SIRtarget,DL ----> TPC = down SIRest < SIRtarget,DL ----> TPC = up BS increases power by DTPC dBs

Power control - TPC generation BS: all base stations in the active set send TPC commands based on a quality measurement BS: threshold for TPC is controlled in the outer loop by the network node MS: power up if TPC bits received of all BS indicate an upward step MS: power down if TPC bits received of at least one BS indicate downward step

Power control - open loop (1) Control RACH TX power uses pathloss SIR target broadcast by BCCH Uplink interference level broadcast by BCCH transmit power of CCPCH

Handover concept SNR estimation[dB] Active set replace hyteresis A hysteresis threshold B C Time A connected Add B to active set Replace B Replace C Remove A with C with B

random data source FEC + rate matching + interleaving OVS long scrambling sampling rate expansion RRC-filter nonlinear PA Pilot TPC TFCI M U X channel searcher Rake de-interleaving + FEC decoding detection D E AWGN Goldcodes 64 groups a 8 codes Length = 38640 QPSK symbol scaling PC DAC decimation 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 21 23 24 27 22 26 29 30 31 BER calculation 28 analog Tx-filter 14 optional ADC 20 18 Rx-filter 19 25 P/S 32 TPC evaluation SIR Target