1 A B C D Linkes Auge Rechtes Auge

Slides:



Advertisements
Ähnliche Präsentationen
Cadastre for the 21st Century – The German Way
Advertisements

PRESENTATION HEADLINE
Word Order in German Subordiante Clauses
DNS-Resolver-Mechanismus
R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
Prof. Dr. HildebrandtFunktionale Darstellungen 1 Darstellung der Zusammenhänge Verbal Grafisch Algebraisch Minimiere die Kosten im Rahmen deiner Möglichkeiten.
Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme Nobelstr. 15 D Stuttgart WP 4 Developing SEC.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Fakultät für informatik informatik 12 technische universität dortmund Specifications Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,
Peter Marwedel TU Dortmund, Informatik 12
Fakultät für informatik informatik 12 technische universität dortmund Hardware/Software Partitioning Peter Marwedel Informatik 12 TU Dortmund Germany Chapter.
Aufgabenbesprechung Programming Contest. Order 7 Bo Pat Jean Kevin Claude William Marybeth 6 Jim Ben Zoe Joey Frederick Annabelle 0 SET 1 Bo Jean Claude.
Wechselpräpositionen
We have a magnetic field that it is very similar to the one of a dipole. Well in reality this is true close to the surface if we go far away enough it.
Wozu die Autokorrelationsfunktion?
Nernst Gleichung: Wird das Potential negativer oder positiver wenn die Konzentration von [X]i zunimmt? Welches Potential hat man wenn [X]i = [X]o ist?
Institut für Verkehrsführung und Fahrzeugsteuerung > Technologien aus Luft- und Raumfahrt für Straße und Schiene Automatic Maneuver Recognition in the.
Institut für Verkehrsführung und Fahrzeugsteuerung > Technologien aus Luft- und Raumfahrt für Straße und Schiene Driving Manoeuvre Recognition > 19. Januar.
Lehrstuhl für Künstliche Intelligenz - Univ. Würzburg Optimization of simulated biological multi-agent systems by means of evolutionary processes Alexander.
CCNA Exploration Network Fundamentals
Seminar Telematiksysteme für Fernwartung und Ferndiagnose Basic Concepts in Control Theory MSc. Lei Ma 22 April, 2004.
Methods Fuzzy- Logic enables the modeling of rule based knowledge by the use of fuzzy criteria instead of exact measurement values or threshold values.
This presentation is timed so you will only need to click on the left mouse button when it is time to move to the next slide. Right click on this screen.
Adjektive Endungen von Frau Templeton.
Laurie Clarcq The purpose of language, used in communication, is to create a picture in the mind and/or the heart of another.
Machen Sie sich schlau am Beispiel Schizophrenie.
die Zeiten (The Tenses) das Aktiv (Active Voice)
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Sanjay Patil Standards Architect – SAP AG April 2008
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
Gender and case of nouns
BAS5SE | Fachhochschule Hagenberg | Daniel Khan | S SPR5 MVC Plugin Development SPR6P.
3rd Review, Vienna, 16th of April 1999 SIT-MOON ESPRIT Project Nr Siemens AG Österreich Robotiker Technische Universität Wien Politecnico di Milano.
Ich möchte ein Eisberg sein. Last time … 3 icebergs Triangels Unique connections Ich möchte ein Eisberg sein
Alp-Water-Scarce Water Management Strategies against Water Scarcity in the Alps 4 th General Meeting Cambery, 21 st September 2010 Water Scarcity Warning.
bei in seit mit auf hinter von nach aus zu für vor.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
DEUTSCHLAND UND DIE MEDIEN
Institut für Öffentliche Dienstleistungen und Tourismus Informal learning for regional development Manfred Walser Towards a Knowledge Society: Is Knowledge.
Fusszeilentext – bitte in (Ansicht – Master – Folienmaster, 1. Folie oben) individuell ändern! Danach wieder zurück in Normalansicht gehen! 1 OTR Shearography.
Kölner Karneval By Logan Mack
Einführung Bild und Erkenntnis Einige Probleme Fazit Eberhard Karls Universität Tübingen Philosophische Fakultät Institut für Medienwissenschaft Epistemic.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
Ein Projekt des Technischen Jugendfreizeit- und Bildungsvereins (tjfbv) e.V. kommunizieren.de Blended Learning for people with disabilities.
Cross-Polarization Modulation in DWDM Systems
Relativpronomen / Relativsätze:
© Boardworks Ltd of 8 Time Manner Place © Boardworks Ltd of 8 This icon indicates that the slide contains activities created in Flash. These.
Alltagsleben Treffpunkt Deutsch Sixth Edition
Negation is when you dont have or dont do something.
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
Relativpronomen / Relativsätze:
AVL-Trees (according to Adelson-Velskii & Landis, 1962) In normal search trees, the complexity of find, insert and delete operations in search.
Sentence Structure Subject and verb are always together. Subject and verb are always together. Subject and verb must agree Subject and verb must agree.
To school => zu der Schule With friends => mit den Freunden On top of the desk => auf dem Schreibtisch Through the wall => durch die Wand.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Vorlesung Knowledge Discovery - Institut AIFB Tempus fugit Towards.
Separable Verbs Turn to page R22 in your German One Book R22 is in the back of the book There are examples at the top of the page.
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
THE PERFECT TENSE IN GERMAN
Component 4 Frankfurt (Oder) & Slubice Seite 1 COMPONENT 4: – in Frankfurt (Oder) & Slubice 1.All participants presented themselves.
Lehrstuhl für Waldbau, Technische Universität MünchenBudapest, 10./11. December 2006 WP 1 Status (TUM) Bernhard Felbermeier.
Social Media and Social Innovation a Manifesto
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
How to use and facilitate an OptionFinder Audience Response System.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
Travel with NASA from the biggest to the smallest distance of the universe.
Technische Universität München Fakultät für Informatik Computer Graphics SS 2014 Rüdiger Westermann Lehrstuhl für Computer Graphik und Visualisierung.
Inter-Cultural Teaching and Learning ICTaL Technische Universität Berlin Zentraleinrichtung Kooperation Wissenschaftliche und interne Weiterbildung Introductory.
Networking on local area knowledge of territory-continuous presence in community (family-centre – people centre – key locations)
FURTHER MASS SPECTROMETRY
 Präsentation transkript:

1 A B C D Linkes Auge Rechtes Auge Versuchen Sie anhand der Folie „Arrow“ die folgenden Gesichtsfeldausfälle zu erklären. Welche Hirnstruktur, bzw. Auge wurde wie geschädigt? Es hilft sich vorzustellen, daß man Nervenbahnen zerschneiden könnte/kann. (Dunkel stellt den Gesichtsfeldausfall dar.) Linkes Auge Rechtes Auge A B C D 1

2 Their receptive field looks like this: Erklären Sie in Worten weshalb das Modell unten Orientierungsselektivität im Cortex erklären kann. Was ist eigentlich Orientierungsselektivität. Was ist ein On- oder Off-subfeld? (siehe Folie „Arrow“ aber auch spätere Vorlesungen) Their receptive field looks like this: Wie sehen die rezeptiven Felder in der Retina bzw. im CGL (LGN) aus (Arrow). Weshalb können dann daraus (durch welche Verschaltung?) cortikale Felder entstehen? 2

3 Erklären Sie nebenstehendes Diagram in Worten (Arrow). Wenn man mit eine Elektrode nicht exakt vertikal in den Cortex einsticht, dann mißt man eine sich mit der Elektrodenposition ändernde Orientientierungsselektivität. Ändert sich diese immer kontinuierlich? Was ist ein Vortex? (siehe hier „map“ Vorlesung) 3

Basics of Computational Neuroscience

The Interdisciplinary Nature of Computational Neuroscience What is computational neuroscience ?

Different Approaches towards Brain and Behavior Neuroscience: Environment Stimulus Behavior Reaction

Psychophysics (human behavioral studies): Black Box Environment Stimulus Behavior Reaction

Neurophysiology: Environment Stimulus Behavior Reaction

Theoretical/Computational Neuroscience: Environment Stimulus Behavior Reaction

Levels of information processing in the nervous system CNS 1m Sub-Systems 10cm Areas / „Maps“ 1cm Local Networks 1mm Neurons 100mm Synapses 1mm Molecules 0.1mm

CNS (Central Nervous System): Systems Areas Local Nets Neurons Synapses Molekules

Cortex: CNS Systems Areas Local Nets Neurons Synapses Molekules

Where are things happening in the brain. The Phrenologists view at the brain (18th-19th centrury) Is the information represented locally ? Molekules Synapses Neurons Local Nets Areas Systems CNS

Results from human surgery CNS Systems Areas Local Nets Neurons Synapses Molekules

Results from imaging techniques – There are maps in the brain CNS Systems Areas Local Nets Neurons Synapses Molekules

Visual System: More than 40 areas ! Parallel processing of „pixels“ and image parts Hierarchical Analysis of increasingly complex information Many lateral and feedback connections CNS Systems Areas Local Nets Neurons Synapses Molekules

Primary visual Cortex: CNS Systems Areas Local Nets Neurons Synapses Molekules

Retinotopic Maps in V1: V1 contains a retinotopic map of the visual Field. Adjacent Neurons represent adjacent regions in the retina. That particular small retinal region from which a single neuron receives its input is called the receptive field of this neuron. V1 receives information from both eyes. Alternating regions in V1 (Ocular Dominanz Columns) receive (predominantely) Input from either the left or the right eye. Each location in the cortex represents a different part of the visual scene through the activity of many neurons. Different neurons encode different aspects of the image. For example, orientation of edges, color, motion speed and direction, etc. V1 decomposes an image into these components. Molekules Synapses Neurons Local Nets Areas Systems CNS

Orientation selectivity in V1: stimulus Orientation selective neurons in V1 change their activity (i.e., their frequency for generating action potentials) depending on the orientation of a light bar projected onto the receptive Field. These Neurons, thus, represent the orientation of lines oder edges in the image. Their receptive field looks like this: Molekules Synapses Neurons Local Nets Areas Systems CNS

Superpositioning of maps in V1: Thus, neurons in V1 are orientation selective. They are, however, also selective for retinal position and ocular dominance as well as for color and motion. These are called „features“. The neurons are therefore akin to „feature-detectors“. For each of these parameter there exists a topographic map. These maps co-exist and are superimposed onto each other. In this way at every location in the cortex one finds a neuron which encodes a certain „feature“. This principle is called „full coverage“. Molekules Synapses Neurons Local Nets Areas Systems CNS

Local Circuits in V1: stimulus Orientation selective cortical simple cell Local Circuits in V1: stimulus Selectivity is generated by specific connections Molekules Synapses Neurons Local Nets Areas Systems CNS

Layers in the Cortex: CNS Systems Areas Local Nets Neurons Synapses Molekules

Local Circuits in V1: LGN inputs Cell types Circuit Spiny stellate Molekules Synapses Neurons Local Nets Areas Systems CNS LGN inputs Cell types Circuit Spiny stellate cell Smooth stellate cell

Considerations for a Cortex Model Input Structure of the visual pathway Anatomy of the Cortex Cell Types Connections Topography of the Cortex „X-Y Pixel-Space“ and its distortion Ocularity-Map Orientation-Map Color Functional Connectivity of the cortex Connection Weights Physiological charateristics of the neurons At least all these things need to be considered when making a „complete“ cortex model

Structure of a Neuron: At the dendrite the incoming signals arrive (incoming currents) At the soma current are finally integrated. At the axon hillock action potential are generated if the potential crosses the membrane threshold The axon transmits (transports) the action potential to distant sites Molekules Synapses Neurons Local Nets Areas Systems CNS At the synapses are the outgoing signals transmitted onto the dendrites of the target neurons

Different Types of Neurons: dendrite dendrite Bipolar cell Unipolar cell axon soma axon soma (Invertebrate N.) Retinal bipolar cell Different Types of Multi-polar Cells Hippocampal pyramidal cell Purkinje cell of the cerebellum Spinal motoneuron

Membrane - Circuit diagram: Cell membrane: Ion channels: Cl- K+ Membrane - Circuit diagram: rest