Online Competitive Algorithms

Slides:



Advertisements
Ähnliche Präsentationen
Christian Scheideler SS 2009
Advertisements

LS 2 / Informatik Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Prof. Dr. W. Conen 15. November 2004
Algorithmen und Datenstrukturen
CSCW-Seminar Escape the Maze C omputer S upported C ollaborative W ork Escape the Maze ist ein Lernszenario: Abstrakt Denken lernen Algorithmen entwickeln.
HEINZ NIXDORF INSTITUT Universität Paderborn Fachbereich Mathematik/Informatik Algorithmische Probleme in Funknetzwerken IX Christian Schindelhauer
HEINZ NIXDORF INSTITUT Universität Paderborn Fachbereich Mathematik/Informatik Algorithmische Probleme in Funknetzwerken X Christian Schindelhauer
Algorithmentheorie 04 –Hashing
Algorithmentheorie 6 – Greedy-Verfahren
WS Algorithmentheorie 13 - Kürzeste (billigste) Wege Prof. Dr. Th. Ottmann.
Prof.Dr.S. Albers Prof. Dr. Th. Ottmann
1 Bewegungsplanung Computational Geometry Prof. Dr. Th. Ottmann Bewegungsplanung bei unvollständiger Information Ausweg aus einem Labyrinth Finden eines.
WS Algorithmentheorie 02 - Polynomprodukt und Fast Fourier Transformation Prof. Dr. Th. Ottmann.
1WS 06/07 Organisatorisches 1.Vorlesung am Montag, : 9-11 Uhr in Gebäude 106, Raum Podcasts: Probleme mit der Videoqualität sind behoben.
Dynamische Programmierung (2) Matrixkettenprodukt
Algorithmentheorie 02 – Polynomprodukt und Fast Fourier Transformation
Prof. Dr. S. Albers Prof. Dr. Th. Ottmann
Prinzipien des Algorithmenentwurfs Backtracking Prof. Dr. Th. Ottmann
Funktionenklassen zur Messung der Komplexität
Algorithmen und Datenstrukturen
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Algorithmen und Datenstrukturen
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 24 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Halbzeit: Kurze Wiederholung
Sortieren vorsortierter Daten
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Algorithmen und Datenstrukturen
WS Prof. Dr. Th. Ottmann Algorithmentheorie 09 - Suche in Texten Suffix –Tree –Konstruktion Ukkonen Algorithmus.
WS Algorithmentheorie 08 – Dynamische Programmierung (2) Matrixkettenprodukt Prof. Dr. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 19 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27 – Kürzeste Wege) Prof. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 4 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Anwendungen von Stapeln und Schlangen
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (04 – Automaten mit ε-Transitionen) Prof. Dr. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmentheorie 03 – Randomisierung (Closest Pair)
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmen und Datenstrukturen
Algorithmentheorie 12 – Spannende Bäume minimalen Gewichts
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 12 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmentheorie 7 – Bin Packing
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmen und Datenstrukturen
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (17 –Turingmaschinen) Prof. Dr. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmen und Komplexität
Algorithmen des Internets 2005 HEINZ NIXDORF INSTITUT Universität Paderborn Algorithmen und Komplexität 1 Klausuraufgaben.
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung 1 SS 2001 Algorithmus von Dijkstra.
Computational Thinking Online Algorithmen [Was ist es wert, die Zukunft zu kennen?] Kurt Mehlhorn Konstantinos Panagiotou.
Effiziente Algorithmen Hartmut Klauck Universität Frankfurt SS
Effiziente Algorithmen
Effiziente Algorithmen
Effiziente Algorithmen
Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS
Effiziente Algorithmen
Quantum Computing Hartmut Klauck Universität Frankfurt WS 05/
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Arne Vater Wintersemester 2006/ Vorlesung
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Institut für Kartographie und Geoinformation Prof. Dr. Lutz Plümer Diskrete Mathematik II Vorlesung Suche des kürzesten Weges in einem Netz.
Der A*-Algorithmus.
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren.
 Präsentation transkript:

Online Competitive Algorithms Computational Geometry, WS 2006/07 Lecture 17 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

Bewegungsplanung bei unvollständiger Information Ausweg aus einem Labyrinth Finden eines Punktes in unbekannter Umgebung Kompetitive Strategien Beispiel: Online-Bin-Packing Beispiel: Suche nach einer Tür in einer Wand Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Ausweg aus einem Labyrinth Gegeben sei ein punktförmiger Roboter, der nur über einen Tastsensor und einen Winkelzähler verfügt. Gesucht ist eine Strategie, mit der der Roboter aus jedem unbekannten Labyrinth herausfindet, wenn es überhaupt einen Ausweg gibt. Herausfinden = den Rand der konvexen Hülle des Labyrinths erreichen = (Entkommen = true) Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

1. Versuch: An der Wand entlang Wähle Richtung beliebig; repeat folge Richtung until Wandkontakt; folge der Wand until Entkommen Willkürliche Festlegung: Sobald der Roboter auf ein Hindernis trifft, dreht er sich rechts herum und läuft so an der Wand entlang, dass sich die Wand stets links von ihm befindet. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Beispiellabyrinth 1 Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Beispiellabyrinth 2 Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

2. Versuch: Möglichst in Anfangsrichtung Wähle Richtung beliebig; Winkelzähler = 0; repeat folge Richtung until Wandkontakt; folge der Wand until Winkelzähler mod 2π = 0 until Entkommen Roboter läuft in Anfangsrichtung, wann immer seine Nase in diese Richtung zeigt! Winkelwerte: Linksdrehung: positiv Rechtsdrehung: negativ Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Verhalten für Labyrinth 1 Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Verhalten für Labyrinth 2 Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

3. Versuch: Pledge Algorithmus Wähle Richtung beliebig; Winkelzähler = 0; repeat folge Richtung until Wandkontakt; folge der Wand until Winkelzähler = 0 until Entkommen Vermeidet Endlosschleifen! Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Korrektheit des Pledge Algorithmus Satz: Der Pledge Algorithmus findet in jedem Labyrinth von jeder Startposition aus einen Weg ins Freie, von der überhaupt ein Ausweg existiert. Lemma 1: Der Winkelzähler W nimmt niemals einen positiven Wert an. Bew. 1: Anfangs ist W = 0, sobald ein Hindernis angetroffen wird, wird W negativ, sobald W = 0 wird, löst sich der Roboter vom Hindernis und wandert in Ausgangsrichtung bis zum nächsten Hindernis! Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Korrektheit des Pledge Algorithmus Zu zeigen: Falls der Roboter nach dem Pledge Algorithmus keinen Weg ins Freie findet, gibt es keinen solchen Weg. Lemma 2: Angenommen, der Roboter findet nicht aus dem Labyrinth heraus. Dann besteht sein Weg bis auf ein endliches Anfangsstück aus einem geschlossenen Weg, der immer wieder durchlaufen wird. Sei P der geschlossene Weg, den der Roboter bei seinem vergeblichen Versuch, aus dem Labyrinth zu entkommen, immer wieder durchläuft. Lemma 3: Der Weg P kann sich nicht selbst kreuzen. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Unmöglichkeit von Kreuzungen Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Korrektheit des Pledge Algorithmus Bew. des Satzes: Fall 1: Roboter durchläuft P gegen Uhrzeigersinn. Fall 2: Roboter durchläuft P im Uhrzeigersinn. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Finden eines Punktes in unbekannter Umgebung Aufgabe: Roboter soll Zielpunkt in einer unbekannten Umgebung finden Erweiterung der Fähigkeiten des Roboters: Er kennt zu jedem Zeitpunkt seine eigenen (globalen) Koordinaten Er kennt die (globalen Koordinaten des Zielpunktes. Strategie Bug: Roboter läuft solange auf Zielpunkt zu, bis er auf ein Hindernis trifft. Dies wird einmal umrundet. Dabei merkt sich der Roboter denjenigen Punkt auf dem Rand des Hindernisses, der dem Zielpunkt am nächsten ist, und kehrt nach der vollständigen Umrundung dorthin zurück. Von diesem Punkt aus wird der Weg in gleicher Weise fortgesetzt. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Strategie Bug repeat laufe auf Zielpunkt zu until Wandkontakt; A = AktuellePosition; (*auf Hinderniswand*) D = AktuellePosition; (*zum Zielpunkt nächster bisher besuchter Punkt auf Hinderniswand*) rücke AktuellePosition entlang der Wand vor; if AktuellePosition näher an Zielpunkt als D then D = AktuellePosition until AktuellePosition = A; gehe auf kürzestem Weg längs Hinderniswand zu D until ZielpunktErreicht Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Beispiel für Zielfindung Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Eigenschaften der Strategie Bug Die Strategie Bug findet stets einen Weg vom Startpunkt s zum Zielpunkt t, wenn ein solcher Weg überhaupt existiert. (Beweis: vgl. R. Klein) Der von der Strategie Bug zurückgelegte Weg kann beliebig viel länger sein als der kürzeste Weg von s nach t. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Kompetitive Strategien: Beispiel Bin-Packing Aufgabe: Gegeben eine Folge o1, o2, … von Objekten mit Größe ≤ 1. Verpacke die Objekte so in Kisten mit Größe 1, dass möglichst wenige Kisten gebraucht werden. Next-fit-Strategie: Packe das jeweils nächste Objekt in dieselbe Kiste wie das vorangehende, wenn es da noch hineinpasst, sonst mache eine neue Kiste auf. Die Next-fit-Strategie verbraucht höchstens doppelt so viele Kisten, wie bei optimaler Packung erforderlich wären. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Kompetitivität einer Strategie Sei P ein Problem und S eine Strategie, die jedes Problem P aus P korrekt löst und dabei Kosten KS(P) verursacht. Strategie S heißt kompetitiv mit Faktor C, wenn es eine Konstante A gibt, sodass für jedes Beispiel P P gilt: KS(P) ≤ C Kopt(P) + A, mit Kopt(P) = Kosten einer optimalen Lösung Next-fit ist kompetitiv mit Faktor 2. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Suche nach einer Tür in einer Wand Roboter mit Tastsensor soll eine Tür in einer (beliebig langen) Wand finden, die sich in unbekanntem Abstand d und unbekannter Richtung vom Startpunkt befindet. 1. Versuch: Wechsele Suchrichtung und erhöhe Suchtiefe inkrementell um je 1. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Verdopplungsstrategie 2. Versuch: Verdopple die Suchtiefe nach jedem Richtungswechsel. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann

Eigenschaften der Verdopplungsstrategie Satz 1: Die Strategie der abwechselnden Verdopplung der Suchtiefe ist kompetitiv mit dem Faktor 9. Satz 2: Jede kompetitive Strategie zum Auffinden eines Punkts auf einer Geraden hat einen Faktor ≥ 9. Das Prinzip der exponentiellen Vergrößerung der Suchtiefe ist erweiterbar auf andere und mehr als zwei Suchräume. Satz 3: Diese Suchstrategie für m Halbgeraden ist kompetitiv mit dem Faktor (2mm / (m -1)m-1) + 1 ≤ 2em +1 Dabei ist e = 2.718… die Eulersche Zahl. Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann