Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/22

Slides:



Advertisements
Ähnliche Präsentationen
BAU 2011 Europas Bauwirtschaft nach der Krise – wie geht es weiter?
Advertisements

Warum migrieren Netze von GSM auf UMTS?
Private Netze Neben öffentlichen GSM-Netzen etabliert sich für die europäischen Eisenbahnen eine neue digitale Zugfunkgeneration, die auf dem GSM-Standard.
Location Based Services
Mobilkommunikation Kapitel 1: Einführung
ISDN-Anschlusstechnik und Leistungsmerkmale
UMTS Grundlagen.
Warum migrieren Netze von GSM auf UMTS?
GSM ▪ Geschichtliches 1915 Drahtlose Sprachübertragung New York - San Francisco 1926 Zugtelefon Hamburg-Berlin 1958 A-Netz in Deutschland 1972 B-Netz in.
Universal Mobile Telecommunication System (UMTS)
Alternative Standards Quellen: WIMAX from A-Z,Heine WiMAX, Maucher Furrer.
M-Commerce - Technik, Anwendungen und Konsortien
Prozessleittechnik und Web 2.0
Agenda 1. Was ist Mobile Computing? 2. Wie funktioniert es?
DFN Tag 99 © FH-Gelsenkirchen 05/1999 xDSL - Aktuelle Entwicklungen 1 Aktuelle Entwicklungen dem Gebiet xDSL Prof. Dr.-Ing. Martin Pollakowski Fachhochschule.
Die Geschichte der Netzwerktechnologie von Carsten Freitag
Anfragesprachen – Dipl. Ing. Ulrich Borchert / FH Merseburg1/10 Grafische Anfragesprachen Geeignet sind grafische Anfragesprachen für Nutzer, die keine.
Anfragesprachen – Dipl. Ing. Ulrich Borchert / FH Merseburg1/7 Datenbanken werden als Anhäufung von Werten eines Wertebereiches aufgefasst und Datenbankabfragen.
Anfragesprachen – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/10
IrDA 1979 wurde die Infrarotkommunikation von der Firma Hewlett Packard erstmalig eingesetzt um den Taschenrechner HP-41C mit einem Drucker zu verbinden.
Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg1/11 DECT (Digital European Cordless Telecommunications ) 1992 legte das Europäische Standardisierungsinstitut.
UML im Überblick – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/22
ZigBee Netzwerke
Release 99 Die Schritte hin zu UMTS wurden vom Standardisierungsgremium 3GPP (3rd Generation Partnership Project) in aufeinander folgende Versionen.
Das UMTS Kernnetz In der GSM Architektur gab es zwei getrennte Bereiche. Leitungsvermittelnde Dienste und paketvermittelnde Dienste (GPRS) Diese Unterscheidung.
Stellung von UMTS Dipl. Ing. Ulrich Borchert Fach: Mobile Computing HS Merseburg (FH) Quelle: Lescuyer /UMTS.
Stellung von UMTS Quelle: Lescuyer /UMTS. Vorkenntnisse Die zweite Generation der Funktelefon- landschaft bestand aus mehreren unterschiedlichen Technologien.
Das UMTS Kernnetz Dipl. Ing. Ulrich Borchert Fach: Mobile Computing HS Merseburg (FH)
Ideale Ausbreitung im Vakuum
Lokale und globale Netzwerke
Lokale und globale Netzwerke
Seminarbeitrag Drahtlose Kommunikation für den Einsatz im Ubiquitous Computing Arndt Buschmann WS 2001/2002.
Seminar Internet-Technologie
Die Drahtlose Gesellschaft Referent Christian Dörner.
Sicherheit in drahtlosen Netzen
UMTS-Ein Standard für Mobilfunksysteme der dritten Generation Seminarvortrag von : Jerbi, Belhassen Betreuerin : Hallman, Elke.
MicroLink dLAN.
Highspeednetze und ihre Anwendungen
1 Gönnheimer Elektronic GmbH, Dr. Julius Leber Str. 2, Neustadt an der Weinstraße, Telefon +49(6321) , Fax +49(6321) ,
Polytechnische Schule Hochfeldstr Böheimkirchen www
WAP = Wireless Application Protocol Protokollstack Ein Protokoll ...
Guten Morgen. ....bald geht‘s los! ;-)
Seminar XML-Technologien - WML Seminar XML-Technologien W ireless M arkup L anguage Christian Spieler.
Übertragungstechnologien:
UMTS = © Chris + Renate + Gerald 2003.
GSM - Mobilfunknetz in Deutschland
Bluetooth Autor: Ron Nitzsche IAV02 14.April 2008.
Handystrahlung – Hintergrund
DVB – H Digital Video Broadcasting – Transmission System for Handheld Terminals von Jens Heidrich Seminar : Multimedia-Protokollen für den Wohnzimmer-PC.
W-LAN Was ist W-LAN? Kablellose Übertragung – Die Geschichte
Vergleich der österreichischen Handynetzbetreiber
Kommunikationssysteme 4
Ortung mit GSM Dipl. Ing. Ulrich Borchert Fach: Mobile Computing HS Merseburg (FH)
Das UMTS - Signal Was wir heute lernen Woher kommt UMTS
ISO/OSI Referenzmodell Physical Layer Öffentliche Kommunikationsnetze
ISO/OSI Referenzmodell Physical Layer Öffentliche Kommunikationsnetze
General Packet Radio Service
Drahtlose Anbindung an Internet und GIS
Von Daniel Brand und Robert Löschinger. A-Netz (1958) Handvermittelt Teilnehmer A-Netz (1958) Handvermittelt Teilnehmer B-Netz (1972) B-Netz.
Verbindungsmöglichkeiten zum Internet
Zusätzliche Hintergrund Informationen zu Breitbandtechnologien
von Marius Liess und Alexander Dietz
Wireless Technologie WLAN von Danijel Stanculovic & Kevin Albrich.
von Lukas Spiegel & Alexander Dür
UMTS. Übersicht Vom A-Netz über GSM zu UMTS Frequenzen Lizenzversteigerung Vorteile Netzaufbau Prozessgewinn Situation / Aussichten / Möglichkeiten.
HF Stadt HF ländlicher Raum Australien, Griechenland, Dänemark
UMTS.
Schwerpunktseminar WS 2001/2002 Christian Theiß
Kapitel XV: Weitere drahtlose Übertragungsverfahren
Quelle: Lescuyer /UMTS
 Präsentation transkript:

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 1/22 GSM Geschichtliches 1915 Drahtlose Sprachübertragung New York - San Francisco 1926 Zugtelefon Hamburg Berlin 1958 A-Netz in Deutschland 1972 B-Netz in Deutschland 1979 erste IR Produkte 1982 Start GSM Spezifikation 1986 C-Netz in Deutschland 1991 DECT Standard für Schnurlostelefone 1992 Einsatz GSM, D-Netz in Deutschland 1994 E-Netz in Deutschland IrDA Standard 1996/1997 Lokale Funknetze (HIPERLAN 23 Mbits/s) Spezifikation Wireless ATM 1998 Spezifikation UMTS drahtlose LAN nach HomeRF 1999 WLAN nach IEEE802.11a Start WAP 2000 Versteigerung UMTS Lizensen GSM mit höheren Übertragungsraten (HSCSD, GPRS) 2001 GPRS in ganz Deutschland 2002 Start i-Mode in Deutschland

drahtlose lokale Netze Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 2/22 Frequenzband System Rubrik 890-915 MHz GSM (GSM 900) Mobilfunk 935-960 MHz 1227,6 MHz GPS Positionsbestimmung 1575,42 MHz 1710-1785 MHz GSM (DCS 1800) 1805-1880 MHz 1880-1900 MHz DECT Schnurlos-Telefone 1900-1920 MHz UMTS (UTRA-TDD) 1920-1980 MHz UMTS (UTRA-FDD) 2010-2025 MHz 2110-2170 MHz 2400-2483,5 MHz WLAN 802.11b.HomeRF.Bluetooth drahtlose lokale Netze 5120-5300 MHz HIPERLAN/1 5150-5250 MHz WLAN 802.11a 5150-5350 MHz HIPERLAN/2 5470-5725 MHz 5725-5825 MHz

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 3/22 Netz Betreiber Zeitraum Eigenschaften Frequenz-bereich Nutzer (Jahr) A Bundespost 1958-1977 analog, handvermittelt 150 MHz 10 000 (1970) B 1972-1994 analog, Selbstwahl 27 000 (1986) C 1986- ca. 2008 analog, zellular 450 MHz 800 000 (1992) D1 Telekom ab 1992 digital, GSM 900 900 MHz 13 Mio. (2000) D2 Vodafone 19 Mio. (2000) E1 E-Plus ab 1994 digital, DCS 1800 1800 MHz 5,8 Mio. (2000) E2 Viag Interkom ab 1998 3,2 Mio. (2000)

Besonderheiten der Funkkommunikation Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 4/22 Besonderheiten der Funkkommunikation Die meisten Unterschiede zwischen der drahtlosen und der drahtgebundenen Kommunikation liegen in der Schicht 1 und 2 im OSI Referenzmodell. Funkkommunikation ist störanfälliger als die drahtgebundene Kommunikation. Problem der Mehrwegausbreitung (erzeugt durch Reflexionen, Streuung und Beugung) Funkkommunikation lässt wesentlich niedrigere Datenraten zu (eingesetzte Frequenzbänder haben geringe Bandbreiten. Werden die Frequenzen erhöht, erhöht sich auch die Datenrate. Das wiederum ist kostenintensiv, energieaufwendiger und störanfälliger.) Daten können mitgehört werden, aber nicht ausgewertet werden. Hier setzen Sicherheitsmechanismen ein. Die Verwendung von Funk unterliegt hoheitlicher Restriktion. Für den Betrieb müssen Genehmigungen eingeholt werden.

Internationale Mobilfunknetze Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 5/22 Internationale Mobilfunknetze NMT 450 (Nordic Mobile Telephone) Arbeiten mit einer Frequenz von 450 MHz Einsatz in: Belgien, Dänemark, Finnland, Island, Luxemburg, Niederlande, Österreich, Schweden und Spanien Weiterentwicklung NMT 900 mit 900 MHz AMPS (Advanced Mobile Phone System sowie AMPS-D) Einsatz in: Australien, Kanada, Neuseeland und USA mit 800 MHz betrieben TACS und J-TACS ([Japan]-Total Access Communication System) Einsatz in: Bahrain, China, Großbritannien, Indien, Irland, Kuwait und Japan auf Basis 900 MHz

Einsatz nur in Frankreich 200 und 400 MHz Basis Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 6/22 Radiocomm 2000 Einsatz nur in Frankreich 200 und 400 MHz Basis PDC (Personal Digital Cellular) Varianten PDC 800 und PDC 1500 Einsatz in Japan Basis 800-900 MHz oder 1500 MHz je nach Variante

Memorandum of Understanding Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 7/22 Memorandum of Understanding 1987 unterzeichneten 13 Teilnehmer aus 12 Staaten das Memorandum of Understanding (MoU). Sie verpflichteten sich, innerhalb eines Zeitrahmens ein digitales Mobilfunksystem auf der Basis GSM aufzubauen. 1997 gab es 200 GSM-Netze in 109 Staaten mit folgenden Standards: GSM 900 und DCS 1800. Handys, die mit beiden Systemen arbeiten können, sind Dualbandhandys. Ausnahmen USA und Japan. In der USA gibt es neben dem analogen AMPS-System noch eine inkompatible Variante von GSM: GSM 1900. Telefone, die alle Bandbreiten abdecken, sind so genannte Tribandhandys.

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 8/22

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 9/22 Umgebung Karlsruhe

Vorteile zellularer Mobilfunknetze Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 10/22 Vorteile zellularer Mobilfunknetze DCS (Digital Cellular System) Vorteile Die Distanz, die ein mobiler Teilnehmer überbrücken muss, ist gering. In D-Netzen beträgt der maximale Abstand 35 km, im E-Netz nur 8. Die zur Verfügung stehenden Ressourcen, also Frequenzen und Zeitschlitze, werden ökonomisch genutzt. So können verschiedene Zellen dieselben Frequenzen benutzen, ohne sich gegenseitig zu stören. Voraussetzung ist ein gewisser Abstand voneinander.

Betrachtung der Nachteile Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 11/22 Betrachtung der Nachteile Theoretisch physikalisch reduziert sich die Wirkung elektromagnetischer Wellen im Quadrat zum Abstand der Sendestation. In der Realität nimmt die Wirkung sogar mit der Potenz vier ab. Um gleiche Wirkung zu haben, muss beim doppelten Abstand zwischen Sende- und Empfangsstation, die 16-fache Sendeleistung aufgebracht werden (ist also etwas für starke Akkus). Geringe Abstände der Basisstationen verringern den Leistungsaufwand, erhöhen jedoch Kosten zum flächendeckenden Zugriff. Für die Infrastruktur mussten für die D-Netze 4,5 Mrd. DM aufgebraucht werden. Für die E-Netze 7,5 Mrd. DM. Das D1-Netz verfügte im Jahr 2000 über 39000 Basisstationen.

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 12/22 a) k=3 b) k=4 c) k=7

Abstand der Basisstationen Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 13/22 Abstand der Basisstationen Der Abstand muss hinreichend groß sein, damit Störungen minimiert werden. Sind Zellradius R und Cluster-Größe bekannt, kann der Mindestabstand kann der Abstand nach D=R*√3k errechnet werden. In GSM-Netzen wird k=7 verwendet.

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 14/22 Mobilfunknetze Mobilfunksysteme der ersten Generation: analoge Netze (A, B, C Netze). Mobilfunk der zweiten Generation: digitale GSM-Netze (D- und E-Netze). Mobilfunk der dritten Generation UMTS-Netze.

Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 15/22 Standard GSM Die Group Special Mobile war eine Organisation, die damit beauftragt wurde, einen europäischen digitalen Mobilfunkstandard zu entwickeln. Der Name GSM stand lange Zeit für diese Organisation, später wurde daraus Global System for Mobile Communication. 1989 wurde die Gruppe durch das Europäische Telekommunikation Standard Institut (ETSI) als Technical Committee (TC) aufgenommen. Ziel ist eine vollständige Flächendeckung. Bewegt sich ein Mobilfunkteilnehmer aus dem Bereich seiner Basisstation, wird durch das so genannte Handover sichergestellt, dass der Datenaustausch nicht abbricht. Durch das Roaming-Abkommen zwischen den Netzbetreibern wird gewährleistet, dass der Teilnehmer im anderen Netz unter dieser Nummer erreichbar ist.

GSM-Netze bieten (im wesentlichen) Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 16/22 GSM-Netze bieten (im wesentlichen) Sprachübertragung SMS (Short Message Service) WAP (Wireless Application Protokoll)

GSM- Netzwerke bestehen aus drei Subsystemen Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 17/22 GSM- Netzwerke bestehen aus drei Subsystemen Betriebssubsystem (Operation and Maintenance Subsystem, OMSS): Dient der Administration und Kontrolle des Netzwerkes. Vermittlungssubsystem (Mobile Switching and Management Subsystem, SMSS): Vermittelt Nutzdaten innerhalb des Netzes und stellt eine Anbindung an andere Netze zur Verfügung. Funksubsystem (Basis Station Subsystem, BSS): Bindet die Mobilfunkteilnehmer an das Netz an. Mehrere Datenbanken speichern relevante Informationen zur Verwaltung der Teilnehmer und zur Kontrolle der Datenflüsse.

Endgeräte in der GSM-Terminologie Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 18/22 Endgeräte in der GSM-Terminologie Unterscheidung nach Sendeleistung Autotelefone 20 W tragbare Geräte mit 8 W Handgeräte mit 5 W Handgeräte mit 2 W

Weiterentwicklung von GSM Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 19/22 Weiterentwicklung von GSM Eine Datenrate von 9600 Bits/s, die GSM zur Verfügung stellt, ist bei weitem nicht mehr zeitgemäß. Deshalb wurden weitere Standards entwickelt. Da diese zwischen der 2. und der 3. Generation liegen, werden diese auch als Phase 2+ bezeichnet. HSCSD (High Speed Circuit Switched Devices) Dieses Verfahren erfordert kaum Veränderung an die Infrastruktur. Steigerung der Datenrate durch: Bessere Kodierungsverfahren (von 9600 Bits/s auf 14400 Bits/s) Durch Bündelung mehrerer Kanäle kann Datenrate vervielfacht werden (theoretisch auf 115,2 KBits/s). HSCSD erfordert Veränderung an Endgeräten HSCSD ist ein leitungsvermitteltes Verfahren, d.h. Nutzer muss auch Kosten tragen, wenn keine Daten ausgetauscht werden.

GPRS (General Packet Radio Service) Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 20/22 GPRS (General Packet Radio Service) Alternative zu HSCSD Bessere Ausnutzung der Übertragungskapazitäten Dient als Zugang in verschiedene Netze, z.B. Netze, die auf IP oder X.25 basieren. Theoretische Datenrate von 171,2 KBits/s Geräte, die einmal eingebucht sind, sind quasi ständig am Netz und benötigen die Infrastruktur nur beim Datenaustausch (allways online). Änderung am Netz und an den Endgeräten sind nötig.

Paketvermittlung [GPRS] gleichzeitig). Klasse B: Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 21/22 GPRS Klassen Multislotklassen geben an, wie viele Funkkanäle gleichzeitig genutzt werden können. Endgeräteklassen: Klasse A: unterstützt Sprache und Daten gleichzeitig (Leitungsvermittlung [GSM] und Paketvermittlung [GPRS] gleichzeitig). Klasse B: Während Datenverbindung (GPRS) können Anrufe (GMS) nur gemeldet werden. Klasse C: manuelle Umschaltung von Sprache auf Daten und umgekehrt.

EDGE (Enhanced Data Rates for GSM Evolution) Mobile Computing – Dipl. Ing. Ulrich Borchert / FH Merseburg 22/22 EDGE (Enhanced Data Rates for GSM Evolution) Steigerung durch neues Modulationsverfahren Datenrate pro Kanal 59,2 KBits/s bei 8 Kanälen 473,6 KBits/s In der Praxis 170 KBits/s hohe Fehleranfälligkeit „sanfter“ Übergang zu UMTS