2.34 Modelle Ein einfaches Energiebilanz Modell (EBM)

Slides:



Advertisements
Ähnliche Präsentationen
Cadastre for the 21st Century – The German Way
Advertisements

Themenportal Europäische Geschichte / Web portal European History
- insbesondere in der Umwelforschung
R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
Herzlich Willkommen zum Informations-Forum: SAP Interoperabilität
The difference between kein and nicht.
1 | R. Steinbrecher | IMK-IFU | KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Natural Sources SNAP11.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
C. Kottmeier, C. Hauck, G. Schädler, N. Kalthoff
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
We have a magnetic field that it is very similar to the one of a dipole. Well in reality this is true close to the surface if we go far away enough it.
Paläozeanographische Modellierung André Paul Raum: GEO 5510, Tel.:
Zeit, Tempus und Aspekt im Englischen Loose Ends.
SOLNET Milan Optimization of the air-to-water heat exchanger configuration for water preheating in open district heating nets Janybek Orozaliev.
Das Late Maunder Minimum – Folge von Strahlungsanomalien?
Three minutes presentation I ArbeitsschritteW Seminar I-Prax: Inhaltserschließung visueller Medien, Spree WS 2010/2011 Giving directions.
Hochschulteam der Agentur für Arbeit Trier Preventing the Brainware Crisis Workshop Schloss Dagstuhl Student Enrollment in Computer Science.
Institut für Wasserbau Stuttgart Geodätisches Institut Stuttgart Institut für Meteorologie und Klimaforschung IMK-IFU SPP 1257 DIRECT WATERBALANCE An interdisciplinary.
K. Butterbach-Bahl | ERSEC International Conference| 05/05/09 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)
Methods Fuzzy- Logic enables the modeling of rule based knowledge by the use of fuzzy criteria instead of exact measurement values or threshold values.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Das Klima in Menschenhand Dipl. Meteorologe Siegfried Vogt
Weather forecasts and crisis management Michael Staudinger
Integration of renewable energies: competition between storage, the power grid and flexible demand Thomas Hamacher.
Laurie Clarcq The purpose of language, used in communication, is to create a picture in the mind and/or the heart of another.
Case Study Session in 9th GCSM: NEGA-Resources-Approach
Dr. Yuri Izrael, Russian vice chair of the IPCC: I think the panic over global warming is totally unjustified. There is no serious threat to the climate.
Machen Sie sich schlau am Beispiel Schizophrenie.
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel Bereich Energetische Biomassenutzung, Hanau Dipl.-Ing. J. Müller Bioturbine,
BAS5SE | Fachhochschule Hagenberg | Daniel Khan | S SPR5 MVC Plugin Development SPR6P.
Analysis of Cross-Polarization Modulation in Dispersion-Managed DWDM Systems Marcus Winter, Christian-Alexander Bunge, Dario Setti, Klaus Petermann LEOS.
Z Corp Customer Examples
Alp-Water-Scarce Water Management Strategies against Water Scarcity in the Alps 4 th General Meeting Cambery, 21 st September 2010 Water Scarcity Warning.
Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic.
Fakultät für Geowissenschaften, Geographie und Astronomie Institut für Meteorologie und Geophysik Literaturseminar zum IPCC 4 th assessment report Leitung:
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Development.
International Program in 109 countries Atmosphere/Climate, Hydrology, Soil, Land Cover/Biology, Phenology and 4 NEW NSF Earth System Science.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Ziele und Informationen
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Verben Wiederholung Deutsch III Notizen.
Faculty of Public Health Department of Health Economics and Management University of Bielefeld WP 3.1 and WP 4.1: Macrocost EUprimecare Plenary Meeting.
Impairments in Polarization-Multiplexed DWDM Channels due to Cross- Polarization Modulation Marcus Winter Christian-Alexander Bunge Klaus Petermann Hochfrequenztechnik-Photonik.
Einführung Bild und Erkenntnis Einige Probleme Fazit Eberhard Karls Universität Tübingen Philosophische Fakultät Institut für Medienwissenschaft Epistemic.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
Uncertainty in feedback mechanisms in climate change projections
Cross-Polarization Modulation in DWDM Systems
FORSCHUNGSINSTITUT FÜR ÖFFENTLICHE VERWALTUNG BEI DER DEUTSCHEN HOCHSCHULE FÜR VERWALTUNGSWISSENSCHAFTEN SPEYER Dr. Sonja Bugdahn 1 Can New Regulators.
Ulrike Romatschke, Robert Houze, Socorro Medina
Lehrstuhl für Energiewirtschaft und Anwendungstechnik Prof. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher Integration of renewable energies: competition.
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Wind Energy in Germany 2004 Ralf Christmann, BMU Joachim Kutscher, PTJ
Sentence Structure Subject and verb are always together. Subject and verb are always together. Subject and verb must agree Subject and verb must agree.
Present Tense Most regular verbs follow this pattern:
M. Jonas 10. März 2008 – 1 Die Klimakonferenz von Bali aus Sicht der Wissenschaft Matthias JONAS Internationales Institut für Angewandte Systemanalyse.
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
THE PERFECT TENSE IN GERMAN
Lehrstuhl für Waldbau, Technische Universität MünchenBudapest, 10./11. December 2006 WP 1 Status (TUM) Bernhard Felbermeier.
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
How to use and facilitate an OptionFinder Audience Response System.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
TUM in CrossGrid Role and Contribution Fakultät für Informatik der Technischen Universität München Informatik X: Rechnertechnik und Rechnerorganisation.
Andreas Burger ZENTRUM FÜR MEDIZINISCHE LEHRE RUHR-UNIVERSITÄT BOCHUM Irkutsk October 2012 Report about the lecture "Report of the TEMPUS IV- Project Nr.
OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fakultät für Verfahrens- und Systemtechnik Institut für Apparate- und Umwelttechnik INNOVATION AND TECHNICAL PROGRESS:
FURTHER MASS SPECTROMETRY
Long-term climate change & Short-term climate variability
 Präsentation transkript:

2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General Circulation Modeling Coupled General Circulation Modeling 2.344 Übersicht über komplexere Modelle GHG= Greenhouse Gas

Goto spielen

A simple model of the greenhouse effect 2.341 A simple model of the greenhouse effect FS = 1370 [W/m^2] solar constant F0 = 1/4 * (1-A)* FS F0 t*Fg Fa thermal transmittance t Ta Atmosphere Solar transmittance s thermal emittance = (1- t ) Fa Fa = (1- t )*  Ta4 Fg =  Tg4 s*F0 Fg Ground Tg Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

t*Fg s*F0 F0 Fa Atmosphere Ta Fa Fg Tg Ground A simple model of the greenhouse effect: Bilance at the top of the atmosphere: F0 = Fa + t*Fg (1) F0 t*Fg Fa thermal transmittance t Atmosphere Ta Solar transmittance s thermal emittance = (1- t ) [Kirchhoff‘s law] Fa s*F0 Bilance at the ground: s*F0 + Fa = Fg (2) Fg Ground Tg Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

andererseits gilt: Fg =  Tg4 A simple model of the greenhouse effect: Bilance at the top of the atmosphere: (1) F0 = Fa + t*Fg Bilance at the ground: (2) Fg = Fa + s*F0 Fa aus (1) in (2) einsetzen : Fg = [F0 - t*Fg ]+ s*F0 Fg = F0 * (1+ s ) / ( 1+ t) andererseits gilt: Fg =  Tg4 Also :  Tg4= F0 * (1+ s ) / ( 1+ t) Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

Tg = 286 [K] Also :  Tg4 = F0 * (1+ s ) / ( 1+ t) A simple model of the greenhouse effect: Also :  Tg4 = F0 * (1+ s ) / ( 1+ t) Zahlenwerte: s = 0,9 ; t = 0,2 ; Albedo A=0,3 ferner: F0 = 1/4 * (1-A)* FS = 0,7* 1370/ 4 = 0,7* 340 = 240 [W/m2]  = 5,67 *10- 8 [Wm-2K-4] Tg = 286 [K] The close agreement with Tg = 288 [K] is partly fortuitous, since in reality non radiative processes also contribute to the energy balance Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

Goto spielen

2.342 Komplexere Modelle Komplexere Modelle

The century-long simulations cited in IPCC Assessment Reports Geographic resolution characteristic of climate Models of the generations of climate models used in the IPCC Assessment Re-ports: FAR (IPCC, 1990), SAR (IPCC, 1996), TAR (IPCC, 2001a), and AR4 (2007). The figures above show how successive generations of these global models increasingly resolved northern Europe. These illustrations are representative of the most detailed horizontal resolution used for short-term climate simulations. The century-long simulations cited in IPCC Assessment Reports after the FAR were typically run with the previous generation’s resolution. Vertical resolution in both atmosphere and ocean models is not shown, but it has increased comparably with the horizontal resolution, beginning typically with a single-layer slab ocean and ten atmospheric layers in the FAR and progressing to about thirty levels in both atmosphere and ocean. Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

Geographic resolution characteristic of climate Models Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

aktueller Stand (2007): 30 levels in both atmosphere and ocean. Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre nach Raumdimensionen geordnet Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

OGCM = ocean general circulation model . Erläuterungen zur Tabelle 2.1 (Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre ): Die Richtung der Dimensionen ist in Klammern spezifiziert: (lat = latitude, long = longitude, z = vertikal); 2.5d = mehrere 2-dimensionale Ozeanbecken, die im südlichen Ozean verbunden sind; Weitere viel verwendete Abkürzungen: EBM = energy balance model, AGCM = atmospheric general circulation model, OGCM = ocean general circulation model . QG = für quasi-geostrophisch, SST = sea surface temperature. In kursiv sind einige Modellbeispiele genannt (entweder Autoren oder Modellbezeichnung). EMICS: Das grau schattierte Gebiet enthält Klimamodelle reduzierter Komplexität (auch Earth System Models of Intermediate Complexity, EMICs genannt), mit denen lange Integrationen durchgeführt werden können (mehrere 10^3 – 10^6 Jahre, oder grosse ensembles). Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

Klimamodelle sind gar nicht so einfach zu verstehen und zu beurteilen (hmm…..- was tun?) Daher : 1. Hinweis auf ausführliche Vorlesungen im www und auf gedruckte Publikationen. 2. Virtueller Gastvortrag : Prof. Broccoli, Rutgers University, New Jersey, USA

1. Ausgewählte Internetquellen

Prof. Stocker, Bern http://www.climate.unibe.ch/ ~stocker/papers/skript0203.pdf zum Original

Inhalt der Vorlesung von Prof. Stocker 1 Einführung.................... .........................................................................................................1 1.1 Ziel der Vorlesung und weiterführende Literatur ................................................................1 1.2 Das Klimasystem..................................................................................................................3 1.3 Aufgaben und Grenzen der Klimamodellierung ..................................................................6 1.4 Historische Entwicklung ......................................................................................................9 1.5 Einige aktuelle Beispiele zur Klimamodellierung .............................................................13 1.6 Zusammenfassung.................................................................... ...........................17 2 Modellhierarchie und einfache Klimamodelle ..................................................................19 2.1 Hierarchie der physikalischen Klimamodelle ....................................................................19 2.2 Punktmodell der Strahlungsbilanz ....................................................................................27 2.3 Numerische Lösung einer gewöhnlichen Differentialgleichung 1. Ordnung ............. .......30 2.4 Klimasensitivität im Energiebilanzmodell ................................................................... ......34 3 Advektion, Diffusion und Konvektion................................................................................41 3.1 Advektion..........................................................................................................................41 3.2 Diffusion............................................................................................................................42 3.3 Konvektion........................................................................................................................43 3.4 Advektions-Diffusionsgleichung und Kontinuitätsgleichung....................... .....................44 3.5 Numerische Lösung der Advektions-Gleichung ................................................................45 3.6 Weitere Verfahren zur Lösung der Advektions-Gleichung ..................................... ..........53 3.7 Numerische Lösung der Advektions-Diffusions Gleichung ..................................... .........59 3.8 Numerische Diffusion .......................................................................................................59 4 Energietransport im Klimasystem und seine Parametrisierung .....................................61 4.1 Grundlagen........................................................................................................................61 4.2 Wärmetransport in der Atmosphäre ..................................................................................62 4.3 Breitenabhängiges Energiebilanzmodell............................................................................65 4.4 Wärmetransport im Ozean ................................................................................................66 .......................................................

5 Anfangswert- und Randwertprobleme...............................................................................71 5.1 Allgemeine Grundlagen .....................................................................................................71 5.2 Direkte numerische Lösung der Poissongleichung ............................................................72 5.3 Iterative Verfahren .............................................................................................................74 5.4 Successive Overrelaxation (SOR)......................................................................................75 6 Gross-skalige Zirkulation im Ozean...................................................................................77 6.1 Die Bewegungsgleichungen......................................................................................... .....77 6.2 Flachwassergleichungen als Spezialfall ............................................................................80 6.3 Verschiedene Typen von Gittern in Klimamodellen........................................................ ..81 6.4 Spektralmodelle.................................................................................................................85 6.5 Windgetriebene Strömung im Ozean (Stommel Modell) .............................................. ...87 6.6 Potentielle Vorticity: eine wichtige Erhaltungsgrösse .................................................... ..93 7 Gross-skalige Zirkulation in der Atmosphäre ..................................................................97 7.1 Zonale und meridionale Zirkulation .............................................................................. ....97 7.2 Das Lorenz-Saltzman Modell ..........................................................................................102 8 Atmosphäre-Ozean Wechselwirkung...............................................................................109 8.1 Kopplung von physikalischen Modellkomponenten................................................... .....109 8.2 Thermische Randbediungungen.................................................................................. .....110 8.3 Hydrologische Randbedingungen............................................................................... .....114 8.4 Impulsflüsse ............................................................................................................. ........116 8.5 Gemischte Randbedingungen ................................................................................... .......116 8.6 Gekoppelte Modelle................................................................................................... .. ...118 9 Multiple Gleichgewichte im Klimasystem .......................................................................122 9.1 Abrupte Klimawechsel aufgezeichnet in polaren Eisbohrkernen ............................... .....122 9.2 Multiple Gleichgewichte in einem einfachen Atmosphärenmodell............................. ....124 9.3 Multiple Gleichgewichte in einem einfachen Ozeanmodell ....................................... .....125 9.4 Multiple Gleichgewichte in gekoppelten Modellen.................................................... .....127 9.5 Schlussbemerkungen und Ausblick .................................................................................130 10 Übungsaufgaben zur Klimamodellierung........................................................................131

Prof. Claussen, Potsdam http://www.pik-potsdam.de/ ~claussen/lectures/ physikalische_klimatologie/ physklim1.pdf zum Original

of Intermediate Complexity IMPRS, 4 June 2003 Earth System Models of Intermediate Complexity 1. Martin Claussen Potsdam-Institut für Klimafolgenforschung / Universität Potsdam Remarks on the Earth system The spectrum of Earth system models Examples from CLIMBER-2 and EMIC workshops Perspective for Integrative Modelling Quelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/

Climate modelling with quasi-realistic models - experiences in describing climate during the Holocene and the Eemian, and in designing scenarios of plausible future climate change. The construction and utility of quasi-realistic climate models is reviewed. Examples of reconstructing past climates are presented, in particular for the last millennium and for the last interglacial, the Eemian (120 ka bp). In addition, the approach of constructing plausible future climates, conditional upon the extent the atmosphere is used as a dump for anthropogenic substances, is demonstrated with examples. Prof. von Storch, GKSS Hans von Storch Institute for Coastal Research, GKSS Research Center, Geesthacht, Germany Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/ 7.5.2004 Centro de Astrobiología, Madrid http://w3g.gkss.de/G/Mitarbeiter/storch/

Institut für Küstenforschung I f K

2. Virtueller Gastvortrag zunächst: Vorbereitung und Einstimmung

Die Atmosphäre über Europa im diskreten Modell U. Cubasch BQuelle:DLR_Schumann200_Klimawandel.ppt

Europa im diskretisierten Modell U. Cubasch BQuelle:DLR_Schumann2000_Klimawandel.ppt

McGuffie and Hendersson-Sellers, 1997 BezugsQuelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/

Für die zeit- und ortsabhängigen Zustandsvariablen: T = Temperatur  = Dichte p = Druck {u,v,w} = Strömungsgeschwindigkeit (3 Komponenten) gelten in jeder Zelle die Grundgleichungen der Strömungs- undThermodynamik. (Erhaltung von Impuls [NavierStokes], Masse [Kontinuitätsgleichung], und Energie, und Zustandsgleichung .) Im Ozean wird an Stelle der Dichte  meist der Salzgehalt S benutzt, da:  =  (S,T,p) . In der Atmosphäre kommen noch wg. der Energiebilanz der Wasserdampfgehalt q und flüssiges Wolkenwasser hinzu. Quelle: / Storch-Güss-Heimann 99, p.99ff./

auf der rotierenden Erde (Corioliskraft! ) Es wird ein auf der rotierenden Erde (Corioliskraft! ) ortsfestes (Advektionsterm! ) Koordinatensystem verwendet. Daher treten in den Navier Stokes Gln.(Impulserhaltung) auf: der Coriolis Parameter f: f = 2 *  * sin  mit:  = Winkelgeschwindigkeit der Erddrehung ,  = geographische Breite und länge der Erdradius : a Quelle: / Storch-Güss-Heimann 99, p.99ff./

Erinnerung an die Hydrodynamik: Eulerian and Lagrangian description BQuelle: Prof. Dick Yue, MIT_ocw 13.021 „Marine Hydrodynamics“, lecture notes „2 Basic Equations“ http:/ocw.mit.edu/OcwWeb/Ocean-Engineering/13-021MarineHydrodynamicsFall2001/CourseHome/index.htm

Behauptung : Es gilt: Erinnerung an die Hydrodynamik: D /Dt BQuelle: Prof. Dick Yue, MIT_ocw 13.021

Beweis :

atmosphere Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

ocean Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Parameterizations The terms Fu, Fv, Gq, Gs, GT and Q describe the effect of “unresolved” processes on state variables u, v, q, ρ and T, i.e., Fu = Fu,Δx(u, v, q, ρ,T) These functions are called „parameterizations“; they are not uniquely determined (i.e., different formulations may serve the same purpose), and the limiting process is not defined, i.e., Fu,Δx(u, v, q, ρ,T) does not exist. There is nothing like “the differential equations” of climate. Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Institut für Küstenforschung I f K Dynamical processes in the atmosphere Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Institut für Küstenforschung I f K Dynamical processes in a global atmospheric model Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Institut für Küstenforschung I f K Dynamical processes in the ocean Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Institut für Küstenforschung I f K Dynamical processes in a global ocean model Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Quasi-realistic Models Models of aximum complexity, which feature as many processes as is possible given the computational resource. Meant as a tool to simulate in space-time detail the trajectory of climate. Quasi-realistic models do not “explain” but allow for “numerical experiments”. Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Quasi-realistic models Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: 1. Atmospheric General Circulation Modeling 2. Coupled General Circulation Modeling Prof. Anthony J. Broccoli Dept. of Environmental Sciences Rutgers University, New Jersey, USA Homepage: http://www.envsci.rutgers.edu/~broccoli/index.html

Atmospheric General Circulation Modeling Anthony J. Broccoli Dept. of Environmental Sciences Zum Original: http://climate.envsci.rutgers.edu/climod/BroccoliAtmos_gcm_env544.ppt

Coupled General Circulation Modeling Anthony J. Broccoli Dept. of Environmental Sciences Zum Original: http://climate.envsci.rutgers.edu/climod/BroccoliCoupled_gcm_env544.ppt

Ist dies Bild schöner als die Urfassung,das folgende Bild? 2.344 Übersicht : Komplexere Modelle

IPCC2001_TAR1_TS-Box3

Box 3: Climate Models: How are they built and how are they applied? Comprehensive climate models are based on physical laws represented by mathematical equations that are solved using a three-dimensional grid over the globe. For climate simulation, the major components of the climate system must be represented in submodels (atmosphere, ocean, land surface, cryosphere and biosphere), along with the processes that go on within and between them. Most results in this report are derived from the results of models, which include some represen-tation of all these components. Global climate models in which the atmosphere and ocean components have been coupled together are also known as Atmosphere-Ocean General Circulation Models (AOGCMs). In the atmospheric module, for example, equations are solved that describe the large-scale evolution of momentum, heat and moisture. Similar equations are solved for the ocean. Currently, the resolution of the atmospheric part of a typical model is about 250 km in the horizontal and about 1 km in the vertical above the boundary layer. The resolution of a typical ocean model is about 200 to 400 m in the vertical, with a horizontal resolution of about 125 to 250 km. Equations are typically solved for every half hour of a model integration. Many physical processes, such as those related to clouds or ocean convection, take place on much smaller spatial scales than the model grid and therefore cannot be modelled and resolved explicitly. Their average effects are approximately included in a simple way by taking advantage of physically based relationships with the larger-scale variables. This technique is known as parametrization. IPCC2001_TAR1_TS-Box3

Projektionen und Szenarios 2.35 Projektionen und Szenarios für das 21. Jahrhundert

The last 160,000 years (from ice cores) and the next 100 years 700 2.351 „Historische Perspektive“ The last 160,000 years (from ice cores) and the next 100 years CO2 in 2100 (with business as usual) 600 Double pre-industrial CO2 500 Lowest possible CO2 stabilisation level by 2100 400 CO2 concentration (ppmv) CO2 now CO2 300 10 200 Temperature difference from now °C –10 100 160 120 80 40 Now Time (thousands of years) Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

IPCC gibt einheitliche Emissionsszenarien vor: 2.352 Emissionsszenarien und die Komplexität der weiteren Entwicklung Die weitere Entwicklung der Emissionen von GHG und SO4- Aerosolen hängen vom komplexen Zusammenwirken vieler Faktoren ab: u.a. Bevölkerung : Wachstum, Altersstruktur, Land-Stadt-Übergang, Wanderung Ökonomie : Wachstum, Struktur Technik : Stand der Technik und Marktdurchdringung „nachhaltiger“ Technologien Regierung und Kultur IPCC gibt einheitliche Emissionsszenarien vor:

Climate change is a sustainable development issue Air pollution Interactions Socio-Economic Development Paths Main drivers are economic growth, technology, population, governance structures, energy and land use Temperature rise Sea level rise Precipitation changes Climate System Water resources, agriculture, forestry Ecological systems and biodiversity Human health Human & Natural Systems Enhanced greenhouse effect Feedbacks Non-climate change stresses Environmental impacts Climate change impacts Carbon dioxide Methane Nitrous oxide Aerosols Atmospheric Concentrations Anthropogenic emissions Figure 5 shows how these these changes will ultimately have environmental impacts on socio-economic development paths. Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 9

IPCC gibt einheitliche Emissionsszenarien vor: SRES = Special Report on Emission Szenarios published in 2000 AD, 592 Seiten Summaries: SPM, TS Chapters: 1: Background and Overview 2: An Overview of the Scenario Literature 3: Scenario Driving Forces 4: An Overview of Scenarios 5: Emission Scenarios 6: Summary Discussions and Recommendations Appendices: ..... IV: Six Modeling Approaches V: Database Description VI: Open Process VII Data tables

Die 4 Leitszenarien der IPCC -Berichte BQuelle: VGB-Literaturrecherche 2006 „Klimawandel und Energiewqirtschaft“, p.106, Bild 8.6, UrQuelle: Kasang, HamburgerBildungsserver, 2005, nach IPCC

The composition of the atmosphere is projected to change causing an increase in temperature and sea level Stand: TAR 2001 Stand: TAR 2001 Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 10

Main climate changes Higher temperatures - especially on land 3.353 Main climate changes Higher temperatures - especially on land Sea level rise Hydrological cycle more intense Changes at regional level Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Understanding Near Term CC 3.3531 Higher Temperatures Understanding Near Term CC Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26.

Model projections of global mean warming compared to observed warming. OriginalBildunterschrift: Model projections of global mean warming compared to observed warming. Observed temperature anomalies, as in Figure TS.6, are shown as annual (black dots) and decadal average values (black line). Projected trends and their ranges from the IPCC First (FAR) and Second (SAR) Assessment Reports are shown as green and magenta solid lines and shaded areas, and the projected range from the TAR is shown by vertical blue bars. These projections were adjusted to start at the observed decadal average value in 1990. Multi-model mean projections from this report for the SRES B1, A1B and A2 scenarios, as in Figure TS.32, are shown for the period 2000 to 2025 as blue, green and red curves with uncertainty ranges indicated against the right-hand axis. The orange curve shows model projections of warming if greenhouse gas and aerosol concentrations were held constant from the year 2000 – that is, the committed warming. Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26 Bildunterschrift:

Projected global surface warming at the 3.3531a Large Scale projections for the 21.Century Projected global surface warming at the end of the 21st century. Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

Projections of Future Changes in Climate Best estimate for low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and for high scenario (A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C). Broadly consistent with span quoted for SRES in TAR, but not directly comparable Quelle:IPCC-AR4wg1_Vortrag Pachauri

Projections of Surface Temperature Scenario B1 Scenario A1B Scenario A2 °C Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28

greatest over land and at most high northern latitudes Projected warming in 21st century expected to be greatest over land and at most high northern latitudes and least over the Southern Ocean and parts of the North Atlantic Ocean

Original Bildunterschrift: Projected surface temperature changes for the early and late 21st century relative to the period 1980 to 1999. The panels show the AOGCM multi-model average projections (°C) for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios averaged over the decades 2020 to 2029 and 2090 to 2099 (right). Some studies present results only for a subset of the SRES scenarios, or for various model versions. Therefore the difference in the number of curves, shown in the left-hand panels, is due only to differences in the availability of results. {Adapted from Figures 10.8 and 10.28} Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28, Bildunterschrift

Corresponding uncertainties to the Projected Temperature Changes Uncertainties as the relative probabilities of estimated global average warming from several different AOGCM and EMIC studies for the same periods. Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28 (nun vollständig)

Near term projections insensitive to choice of scenario Folgerung: Near term projections insensitive to choice of scenario Longer term projections depend on scenario and climate model sensitivities

Summary: Projections of Future Changes in Climate For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios. Even if the concentrations of all greenhouse gases and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. Earlier IPCC projections of 0.15 to 0.3 oC per decade can now be compared with observed values of 0.2 oC Quelle:IPCC-AR4wg1_Vortrag Pachauri

Land areas warm more than the oceans with the greatest warming at high latitudes Stand: TAR 2001 (SRES Scenario A2 for 2071-2100 AD relative to 1961-1990) Multi-model ensemble annual mean change of the temperature for emission scenario A2 Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

3.3532 Sea Level Rise Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

Tens of millions of people are projected to be at risk of being displaced by sea level rise Assuming 1990s Level of Flood Protection Stand: TAR 2001 Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts: A Global Perspective. Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

Hydrological Cycle more intense precipitation increases very likely in high latitudes Decreases likely in most subtropical land regions Quelle:IPCC-AR4wg1_Vortrag Pachauri

Weitere Aussagen der Modelle

Projections of Future Changes in Climate There is now higher confidence in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation, and some aspects of extremes and of ice.

PROJECTIONS OF FUTURE CHANGES IN CLIMATE Snow cover is projected to contract Widespread increases in thaw depth most permafrost regions Sea ice is projected to shrink in both the Arctic and Antarctic In some projections, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century

PROJECTIONS OF FUTURE CHANGES IN CLIMATE Very likely that hot extremes, heat waves, and heavy precipitation events will continue to become more frequent Likely that future tropical cyclones will become more intense, with larger peak wind speeds and more heavy precipitation less confidence in decrease of total number Extra-tropical storm tracks projected to move poleward with consequent changes in wind, precipitation, and temperature patterns

Internationalen Gemeinschaft 2.36 Was tun ? Erste Ansätze der Internationalen Gemeinschaft

Such a level should be achieved within a time-frame sufficient : UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE: UNFCC92: Rio de Janeiro 1992 ARTICLE 2: OBJECTIVE The ultimate objective of this Convention .... is to achieve, .… stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient : to allow ecosystems to adapt naturally to climate change. to ensure that food production is not threatened, and to enable economic development to proceed in a sustainable manner. Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Stabilization of the atmospheric concentration of carbon dioxide will require significant emissions reductions Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 19

IPCC: Climate Change 2001- The Scientific Basis Summary for Policymakers (SPM) Drafted by a team of 59 Approved ‘sentence by sentence’ by WGI plenary (99 Governments and 45 scientists) 14 chapters 881 pages 120 Lead Authors 515 Contributing Authors 4621 References quoted Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

IPCC Website http://www.ipcc.ch

Ansatzpunkte zur Wende 1. CO2-freie Energiequellen Erneuerbare Energien ( RE =Renewable Energies) Wasserkraft, Wind, Biomasse, Sonne (themisch, Strom) Kernenergie , Generation IV ; Kernfusion Geothermie (Oberflächennah, Tiefe Geothermie) 2. CO2 Sequester und GeoEngineering CCS, Storage: in geologischen Schichten, im Meer Eisendüngung zum Algenwachstum, Aufforsten Sulfat in die Stratoposhäre 3. Rationelle Energieverwendung Gleiche Energiedienstleistung mit geringerem Energieeinsatz Höhere Wirkungsgrade bei Kraftwerken, Motoren etc. 4. Verhaltensänderung Leben mit weniger Energiedienstleistungen, aus Knappheit oder Bescheidenheit Ernährung: „Weniger Fleisch“

Pflicht für jeden Immer strebe zum Ganzen, und kannst Du selber kein Ganzes Werden, als dienendes Glied schließ an ein Ganzes Dich an Spruch von JWG vom bescheidenen aber endlichen Beitrag eines Wasserträgers Quelle: J.W. Goethe: Gedichte, Herausgeber ErichTrunz, Verlag C.H. Beck. p.226 ; Urquelle:JWG: Distichon im Zusammenhang der Xenien entstanden, aber außerhalb des Xenien Zyklus veröffentlicht

Wichtigste benutzte Literatur für 0.2 : 1. IPCC-COP6a_Bonn2001_WatsonSpeech: Redemanuskript + Bilder 2. IPCC2001_TAR1: Climate Change 2001, The Scientific Basis insbesondere Technical Summary und die jeweils als Quelle oder „Urquelle“ angegebenen Seiten.

Reste

CO2, temperature, precipitation and sea level in the 21.th century All IPCC projections show that the atmospheric concentration of CO2 will increase significantly during the 21th century in the absence of climate change policies; Climate models project that the Earth will warm 1.4 to 5.8 °C between 1990 and 2100, with most land areas warming more than the global average; Precipitation will increase globally, with increases and decreases locally, with an increase in heavy precipitation events over most land areas; Sea level is projected to increase 8-88 cm between 1990 and 2100; Models project an increase in extreme weather events, e.g. heatwaves, heavy precipitation events, floods, droughts, fires, pest outbreaks, mid-latitude continental summer soil moisture deficits, and increased tropical cyclone peak wind and precipitation intensities. Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

Global mean surface temperature is projected to increase during the 21st century Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 11

Projected surface temperatures for the 21st century would be unheralded in the last 1000 years Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 12

Land areas warm more than the oceans with the greatest warming at high latitudes (SRES Scenario A2 for 2071-2100 AD relative to 1961-1990) Multi-model ensemble annual mean change of the temperature for emission scenario A2 Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

There is significant inertia in the climate system Scenario: Stabilisation of [CO2] at 550 ppm Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 14

Some areas are projected to become wetter, others drier (SRES Scenario A2 for 2071-2100 AD relative to 1961-1990) Multi-model ensemble annual mean change of the precipitation for emission scenario A2 UrQuelle: IPCC2001_TAR: Fig.9.11d, p.550 (vereinfacht) Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 15

Projected Changes in Extreme Climate Events and Resulting Impacts Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1

Projected Changes in Extreme Climate Events and Resulting Impacts (cont.) Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1 continued

Crop yields are projected to decrease throughout the tropics and sub-tropics, but increase at high latitudes 2020‘s Percentage change in average crop yields for the climate change scenario. Effects of CO2 are taken into account. Crops modeled are: wheat, maize and rice. Jackson Institute, University College London / Goddard Institute for Space Studies / International Institute for Applied Systems Analysis 2050‘s 97/1091 16 2080‘s Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 17

Tens of millions of people are projected to be at risk of being displaced by sea level rise Assuming 1990s Level of Flood Protection Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts: A Global Perspective. Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

Biological systems have already been affected Biological systems have already been affected in many parts of the world by changes in climate, particularly increases in regional temperature Bird migration patterns are changing and birds are laying their eggs earlier; the growing season in the Northern hemisphere has lengthened by about 1-4 days per decade during the last 40 years; and there has been a pole-ward and upward migration of plants, insects and animals. Projected changes in climate will have both beneficial and adverse effects on water resources, agriculture, natural ecosystems and human health, but the larger the changes in climate the more the adverse effects dominate Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

both beneficial and adverse effects on Projected changes in climate will have both beneficial and adverse effects on water resources, agriculture, natural ecosystems human health, but: the larger the changes in climate - - - the more the adverse effects dominate Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

Early Results for 2007-Report IPCC-AR4 UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Early Results for 2007-Report IPCC-AR4 Model calculations with 3 emissions scenarios, representing 550, 700 and 800 ppm CO2 by 2100 AD , give: Global temperatures are likely to rise by 2.5 – 4 °C by 2100, Arctic will become ice-free during summer by 2090 AD . (even in the 550 ppmCO2 case) The global sea level will rise by up to 40 cm , composed of up to 30 cm as water warms and expands, and by an additional 10 cm as part of Greenland’s ice sheet melts. weakening of the Atlantic ocean circulation. (not a shut down !) more rain and snow at high latitudes and in the tropics, and less rainfall in Mediterranean and subtropical regions. extreme precipitation and drought increase worldwide. UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Early Results for 2007-Report IPCC-AR4 Originaltext: Global temperatures are likely to rise by 2.5–4 C by 2100, according to the latest calculations by scientists at the Max Planck Institute for Meteorology in Hamburg, Germany. The institute is one of 15 asked by the Intergovernmental Panel on Climate Change to run extended climate simulations for its fourth assessment report. The researchers ran six parallel experiments, requiring 400,000 computing hours, using their atmospheric general circulation model ECHAM5. They looked at three emissions scenarios, representing carbon dioxide concentrations of 550, 700 and 800 parts per million (p.p.m.) by 2100 (see graph). Even under the most optimistic assumptions, the model suggests that the Arctic will become ice-free during summer by 2090, says Erich Roeckner, who heads the group. The global sea level will rise by up to 30 centimetres as water warms and expands, and by an additional 10 centimetres as part of Greenland’s ice sheet melts. The scientists also expect a weakening — but not a shut-down — of the Atlantic ocean circulation. There will be more rain and snow at high latitudes and in the tropics, and less rainfall in Mediterranean and subtropical regions. Extreme precipitation and extreme drought are likely to increase worldwide. Q.S. (Q.S.Quirin Schiermeier) UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf