1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: https://code.zmaw.de/projects/cdo/wiki/CMOR z.Z. https://code.zmaw.de/projects/cdo/wiki/CMOR i.CMIP-CDOs.ppt.

Slides:



Advertisements
Ähnliche Präsentationen
Imperative Programmierung
Advertisements

der Universität Oldenburg
Phasen und ihre Workflows
Präsentation PS: Klasse File von Janko Lange, Thomas Lung, Dennis Förster, Martin Hiller, Björn Schöbel.
Ausführen.
Modellgetriebene Softwareentwicklung
Suche in Texten (Stringsuche )
der Universität Oldenburg
Objektorientierung mit VBA
Ausnahmen HS Merseburg (FH) WS 06/07.
FH-Hof Extensible Markup Language Richard Göbel. FH-Hof Extensible Markup Language XML XML ist universeller Ansatz für die Strukturierung von Zeichenketten.
Indirekte Adressierung
Java: Referenzen und Zeichenketten
Dateihandles Um in Perl eine bestimmte Datei zum Lesen, Schreiben oder Anhängen zu öffnen, benötigt man so genannte Dateihandles. Ein Dateihandle ist der.
Algorithmus. Ein Kochrezept, zum Beispiel: Kartoffelbrei.
Strukturen. In einer Struktur kann eine beliebige Anzahl von Komponenten (Daten) mit unterschiedlichen Datentypen (im Gegensatz zu Feldern) zusammengefaßt.
Konstruktoren.
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Kapitel 5 Claudio Moraga; Gisbert Dittrich FBI Unido
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
SQL/XML. © Prof. T. Kudraß, HTWK Leipzig 2 2 Motivation Speicherung von XML in allen großen kommerziellen DBMS vorhanden proprietäre Lösungen für die.
Imperative Programmierung Funktionen und Parameter
Modularisierungstechniken
Technik Gestaltung Navigation Daten. Übersicht Client Webbrowser InternetServer.
DVG Kommentare1 Kommentare. DVG Kommentare 2 Kommentare Es gibt zwei Arten von Kommentaren: einzeilige Kommentare // der Kommentar geht.
DVG Methoden 1 Methoden. 2 int dezi = Integer.parseInt(args[0]); boolean vz = (dezi>=0); dezi = Math.abs(dezi); String Bin = ""; do { } while.
DVG Klassen und Objekte
DVG Kommentare 1 Kommentare. 2 Kommentare Es gibt zwei Arten von Kommentaren: einzeilige Kommentare // der Kommentar geht bis zum Ende der Zeile.
Wir müssen also überlegen: Implementierung der Knoten, Implementierung der Kanten, daraus: Implementierung des Graphen insgesamt. Annahme: die Knoteninhalte.
© 2005 Pohlig - Taulien Datenströme GK Informatik 1 Datenströme.
3.5.2 Fremdschlüssel/ Referentielle Integrität (1/9)
Welche Funktion hat die php.ini? -Beinhaltet wichtige Einstellungen für PHP. Genannt seien hier u.a. der Speicherort von Cookies, Parameter der Kompilierung,
Einführung in die Programmiersprache C 1
Einführung in die Programmiersprache C 3.Tag Institut für Mathematische Optimierung - Technische Universität Braunschweig.
Betrieb von Datenbanken Marco Skulschus & Marcus Wiederstein Datenmanipulation Lehrbuch, Kapitel 4.
Einführung in die Programmiersprache C 4
Vom Kontext zum Projekt V Carina Berning Sabrina Gursch Pierre Streicher Intelligente Dateisysteme.
PG5 Building Advanced / DDC Suite 2.0 BACnet
Unterprogramme in JAVA
1 SWeb Alarmin Erweitert PG5 Building Advanced / DDC Suite 2.0 SWeb Alarming Erweitert SWeb Alarming Erweitert - Erweitert.
XJustiz: Elektronischer Rechtsverkehr mit XML
Einführung in PHP 5.
Kommandozeile und Batch-Dateien Molekulare Phylogenetik – Praktikum
Formulare in HTML.
8 Erzeugen und Verwalten von Tabellen Ziele Kennenlernen der wichtigsten Datenbankobjekte Anlegen von Tabellen Datentypen zur Definition von Spalten.
A) Erklären Sie den Datentyp char. b) Erklären Sie den Datentyp Struct c) Erklären Sie die Wirkungsweise des Operators & bei Anwendung im Zusammenhang.
Java Syntaxdiagramme Buchstabe A B Z a z ... Ziffer
Mag. Thomas Hilpold, Universität Linz, Institut für Wirtschaftsinformatik – Software Engineering 1 Algorithmen und Datenstrukturen 1 SS 2002 Mag.Thomas.
Mag. Thomas Hilpold, Universität Linz, Institut für Wirtschaftsinformatik – Software Engineering 1 Algorithmen und Datenstrukturen 1 SS 2002 Mag.Thomas.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: z.Z. i.CMIP-CDOs.ppt.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente? Vorschlag: CDO-Wiki (code.zmaw); z.Z. i.CMIP-CDOs.ppt als Diskussionsgrundlage ii.CDOandCMIP-Standard.docx.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: i.CMIP-CDOs.ppt.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: i.CMIP-CDOs.ppt.
1 Prozesse im Studierendenmanagement Kontext: Semesterbeiträge.
Funktionen. Aufgabe : Eingabe zweier Zahlen ---> Minimum bestimmen Dann nochmals Eingabe zweier Zahlen ---> Minimum bestimmen.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: i.CMIP-CDOs.ppt.
1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: i.CMIP-CDOs.ppt.
Funktionen, Felder und Parameter- übergabe. Funktionsaufruf mit Feld als Parameter: Parameter = Name des Feldes.
1 / 11 Organisatorisches 1.Dokumente in: i.CDO-CMOR_Konforme-Formatierung.ppt.
1 / 11 Organisatorisches 1.Dokumente in: i.CDO-CMOR_Konforme-Formatierung.ppt.
1 / 11 Organisatorisches 1.Die Dokumente CDO-CMOR_Konforme-Formatierung.ppt und Konforme_CDOs.ppt sind wieder zu einem Dokument zusammengefasst (alter.
C++ FÜR cOMPUTERSPIELENTWICKLER
Lineare Optimierung Nakkiye Günay, Jennifer Kalywas & Corina Unger Jetzt erkläre ich euch die einzelnen Schritte und gebe Tipps!
Tutorium Software-Engineering SS14 Florian Manghofer.
Funktionen (Zweck und Eigenschaften) Funktionen sind Unterprogramme, die einen bestimmten Zweck erfüllen Sie zerlegen Probleme in kleine, abgeschlossene.
Förderverein Bürgernetz München Land e.V. Seite 1 von 16 Textverarbeitung-2016_06 © 2016–Günther Scheckeler Tel.: Inhalt 1 Bestandteile eines.
Strukturen (Eigenschaften) Strukturen dienen zur Zusammenfassung mehrerer Komponenten verschiedener Typen zu einer Einheit, die dann mit gemeinsamen Namen.
CMIP6-DICAD – FU Berlin Thomas Schartner
Das IT - Informationssystem
Organisatorisches Die Dokumente CDO-CMOR_Konforme-Formatierung.ppt und Konforme_CDOs.pptx sind wieder zu einem Dokument zusammengefasst (Name: CDO-CMOR.pptx).
Implementieren von Klassen
 Präsentation transkript:

1 / 11 Organisatorisches 1.Versionsarchiv für Dokumente: z.Z. i.CMIP-CDOs.ppt als Diskussionsgrundlage ii.CDOandCMIP-Standard.docx (noch nicht) 2.Eingabedateien zum Testen in: /work/ik0555/cmip5/archive/CMIP5/output/MPI-M/ 3.Raumreservierung 207 ca. jeden 2. Dienstag 4.nächstes Treffen am Di. 28. Juli 10:00 ?

2 / 11 CMIP[5,6,...] und CDOs Definition: file-c sind soweit wie möglich CMIP-konforme Dateien Definition: „so weit wie möglich“: vollständig für CMIP-Variablen Definition: CMIP5-Variablen sind die in standard_output.xls A.es gibt einen cdo operator „cmor“ mit cdo cmor,var,tab,... ifile ofile-c der CMIP-konforme Ausgabedateien erzeugt, falls: ifile enthält genau eine CMIP Variable inkl. ancillary_variables var ist ein CMIP oder MPI-ESM Variablenname B.die cdos liefern grundsätzlich so weit wie möglich CMIP-konforme Dateien C.cdo Ausgabe von CMIP-konformen Eingabedateien ist so weit wie möglich CMIP-konform cdo ifile1-c... ifilen-c ofile-c  die cdos können bei der täglichen Arbeit und in den CMIP5/6 processing Skripten verwendet werden  Bjorn ist glücklich

3 / 11 CMIP[5,6+,...] und CDOs: Wording A.Konforme Formatierung: cdo cmor,var,tab,... ifile ofile-c Hintergrund: Es soll einen Befehl geben, der benutzt werden kann, bzw. soll, um CMIP5 und später CMIP6+² Variablen entsprechend den Projekt-Standards zu formatieren. Das bedeutet, dass die Daten gegebenenfalls ins ESGF eingefüllt werden sollen. Dafür ist es essentiell, dass die Daten den vom Projekt vorgeschriebenen Namen haben. Die Erfahrung mit Daten, die zur ESGF-Publikation eingereicht wurden, zeigt, dass leider nicht erwartet werden kann, dass die Daten mit den verlangten Namen abgegeben werden, solange Freiheiten in der Namensgebung bestehen. Bei der ESGF-Publikation muss dann die Annahme der Daten verweigert werden, mit den entsprechenden Auswirkungen auf den reibungsfreien Ablauf. Wenn alles schief geht, kann es passieren, dass die Daten unter falschen Instituts-, Modell-, oder Experimentnamen im ESGF liegen, und von den Datennutzern nicht gefunden werden können. Aus diesem Grund sollte es nicht möglich sein, den Ausgabefilenamen anzugeben, weshalb der oben angegebene Dateiname durchgestrichen ist. Eventuell muss eine Umbenennung erfolgen. Kalle sieht es kritisch, wenn kein o-file-c Namen angegeben werden kann, da im WF der Wissenschaftler der vorgeschriebene Name nicht akzeptabel sein kann. Stephanie sieht keinen Use-Case hierfür. Die Ergebnisdatei ofile-c darf nur eine Variable enthalten. Vorschlag : ein zweiter Operator ‚cdo pcmor,var,tab,... ifile ofile-c‘ soll die gewünschten Freiheiten zulassen Bemerkung: ‚cmor‘ muß wg. der (jährlichen) operationellen Kettenverarbeitung einen ‚chunk_range‘ übergeben; für pcmor ist das nicht zwingend notwendig. Letzen Endes eine Entscheidung am MPI-M. ²DECK, CMIP6, und endorsedMIPs

4 / 11 CMIP[5,6+,...] und CDOs: Wording B. Konforme CDOs die cdos liefern grundsätzlich so weit wie möglich CMIP konforme Dateien Hintergrund: Es soll auch möglich sein, die CDOs zu benutzen, um Datenverarbeitung durchzuführen, ohne eine schon vorhandene Konformität unnötigerweise zu zerstören, bzw. eine CDO-Ausgabedatei soll grundsätzlich soweit wie möglich standardkonform sein, ohne allerdings den gewohnten WF der Wissenschaftler mit den CDOs einzuschränken. Ein Beispiel ist die Zusammenfassung mehrerer Variablen in einer Datei. Dabei sollen sich nicht die Metadaten (Dimensions-, Koordinatennamen,..) ändern, aber die Konformität ist damit natürlich zerstört. Sie müsste über den Aufruf ‚cdo cmor,var,tab,... [-selname,var] ifile‘ wiederhergestellt werden.

5 / 11 A.Konforme Formatierung 1. Ausbaustufe: Vorteil: wohldefinierte Schnittstellen transparenter Übergang CMIP5  CMIP6  CMIP7... implementierbar ohne weitere Änderungen der CDOs eventuell Tabelle mit Zuordnung : CMIP-Variablenname ECHAM-,JSBACH-,MPIOM-,HAMOCC-Codenr. zusätzliche CMIP Tabelle(n) mit lokalen Variablen/Experimenten möglich cdo cmor ifile cmor.xcmor2.a ofile-c DKRZPCMDIMPI-M Name wird von CMOR gesetzt

6 / 11 CMIP[5,6,...] und CDOs IMDI/CMOR Postprocessing workflow für CMIP5 Experimente cmor.a cmor.x

7 / 11 A.Konforme Formatierung letzte Ausbaustufe: Die Verarbeitung in cmor.x wird Schritt für Schritt in die CDOs verschoben. In der letzten Stufe werden die CMOR Library-Aufrufe in den CDOs getätigt: DKRZPCMDIMPI-M cdo cmor ifile cmor.xcmor2.a ofile-c X PCMDIMPI-M cdo cmor ifile cmor2.a ofile-c Name wird von CMOR gesetzt

8 / 11 A.Konforme Formatierung: Eingabe cdo cmor ifile cmor.xcmor2.a ofile-c var: variable name tab: MIP table name realm³ shape²³ [chunk-range] ffile gfile ifile command-line Eingabe branch_time basetime experiment_id forcing parent_experiment_id parent_experiment_rip initialisation_method physics_version realization [ comment history references]² command-line file name: ffile input_dir tabs_dir grids_dir arch_dir project_id institute_id model_id calendar contact source product env. params file name: gfile ² optional ³ nicht benötigt ²³ kann eventuell aus den Daten abgeleitet werden

9 / 11 A.Konforme Formatierung: Eingabe cdo cmorf,ffile cdo cmorg,gfile cdo cmor,var,tab[[,realm],shape[,chunk-range]] ifile ofile-c oder cdo cmor,var,tab[[,realm],shape[,chunk-range]] [-cmorf,ffile] [-cmorg,gfile] \ ifile ofile-c var: variable name tab: MIP table name realm shape ffile gfile [es gibt default name] ifile command-line Eingabe branch_time basetime experiment_id forcing parent_experiment_id parent_experiment_rip initialisation_method physics_version realization [ comment history references] command-line file name: ffile input_dir tabs_dir grids_dir arch_dir project_id institute_id model_id calendar contact source product env. params file name: gfile

10 / 11 A.Konforme Formatierung: CommandLineEingabe cdo cmor,var,tab[[,realm],shape[,chunk-range]] -cmorf,ffile -cmorg,gfile ifile ofile-c cdo cmor ifile cmor.xcmor2.a ofile-c var: variable name (CV) tab: MIP table name (CV) realm (CV) shape Expid-file Proj-file ifile command-line Eingabe: 23. Juni 15 Name wird von CMOR gesetzt

11 / 11 cdo cmor,var,tab[,[realm,]shape[,chunk-range]] -cmorf,ffile -cmorg,gfile ifile Für CMIP5 und CMIP-Daten: IV.shape (DKRZ CV): agrid, ogrid, alevel,... Systematisch: axy, oxy, axyl, axyp, oyz,... (passages, basins?) Kann man das aus den Daten herleiten? Aus ‚var‘ und Daten? Wurde zum Chunking benötigt. V.ffile: Namenskonvention (‘experiment_id‘_‘rip‘...ksh) ? Default (experiment_id_rip.ksh) ? environment parameter => experiment_id_rip.ksh => ffile VI.gfile: Namenskonvention (‚project_id‘_‘institute_id‘_‘model_id‘...ksh) ? Default (project_id_institute_id_model_id.ksh) ? environment parameter => project_id_institute_id_model_id.ksh => gfile VII.Übergabe an cmor.x durch Aufbau der NAMELISTs? => i.cmor.x kann zunächst ohne Änderung benutzt werden ii.die Skripten für die Experimente und das Postprocessing können ohne Änderung die verschiedenen Ausbaustufen von ‚‘cdo cmor,...‘ benutzen A.Konforme Formatierung: CommandLineEingabe

12 / 11 &CMORCTRL INPUT_FILENAME=${ifile} CHUNK_RANGE = "“ (def=“”) TABLE_NAME = Amon def=NA REALM = "${realm}“ def=atmos REC_NUM = ${RecDay} header! OUT_FLAG = "replace" (if chunk_range=“”) SHAPE = "${shape}" ANZVARS = 1 var =tas unit =„K“ Expid-file =aquaControl_r1i1p1.ksh Proj-file = MPI-M_MPI-ESM-LR.ksh / A.Konforme Formatierung: files cdo cmor,var,tab[[,realm],shape[,chunk-range]] -cmorf,ffile cmorg,gfile ifile experiment_id=„aquaControl“ realization=1 initialization_method=1 physics_version=1 baseyear=1850 forcing=„N/A“ parent_experiment_id=„N/A“ parent_experiment_rip=„N/A“ branch_time=0.0 [ comment=„“ history=„“ references=„“] ffile= aquaControl_r1i1p1.ksh &CMORCONST INPUT_DIRNAME = “${input_dir}“ TABDIR = "${tabs_dir}“ GRIDFILE_DIRNAME = "${grids_dir}“ OUTPUT_DIRNAME = "${arch_dir}“ PROJECT_TEXT = "${project_id}“ MOD_ID = "${model_id}“ INSTITUTE_ID =“${institute_id}“ SOURCE_TEXT = "${source}” CONTACT_TEXT = “${contact}” CALENDAR_TEXT = “${calendar}“ PRODUCT =„${product} EXPEID = "${exeriment_id}“ RUN = "${realization}“ INM = "${initialisation_method}“ PHV = "${physics_version}“ FORCING_TEXT = "${forcing}“ HISTORY_TEXT = "${history}" COMMENT_TEXT = "${comment:-""}" REFERENCES_TEXT = "${references}“ INIT_YEAR = ${baseyear} PAR_MOD = "${parent_experiment_id}“ PAR_RIP = "${parent_member_rip}" BRANCH_T = ${branch_time} ZOSCONST = ${zosga},${zossga} / input_dir=“.” tabs_dir=“.” grids_dir=“.” arch_dir=“.” project_id=CMIP5 model_id=MPI-ESM-LR institute_id=MPI-M source=„my model“ calendar=standard product=output gfile= MPI-M_MPI-ESM-LR.ksh cdo cmor ifile cmor.xcmor2.a ofile-c

13 / 11 &CMORVAR INPUT_FILENAME=${ifile} CHUNK_RANGE = "“ (def=“”) TABLE_NAME = Amon (no def) REC_NUM = ${RecDay} header! OUT_FLAG = "replace" (if chunk_range=“”) SHAPE = "${shape}" ANZVARS = 1 var =tas unit =„K“ Expid-file =aquaControl_r1i1p1.ksh Proj-file = MPI-M_MPI-ESM-LR.ksh / A.Konforme Formatierung: files cdo cmor,var,tab[[,realm],shape[,chunk-range]] -cmorf,ffile -cmorg,gfile ifile experiment_id=„aquaControl“ realization=1 initialization_method=1 physics_version=1 baseyear=1850 forcing=„N/A“ parent_experiment_id=„N/A“ parent_experiment_rip=„N/A“ branch_time=0.0 [ comment=„“ history=„“ references=„“] ffile= aquaControl_r1i1p1.ksh &CMOREXP EXPEID = "${exeriment_id}“ RUN = "${realization}“ INM = "${initialisation_method}“ PHV = "${physics_version}“ FORCING_TEXT = "${forcing}“ HISTORY_TEXT = "${history}" COMMENT_TEXT = "${comment:-""}" REFERENCES_TEXT = "${references}“ INIT_YEAR = ${baseyear} PAR_MOD = "${parent_experiment_id}“ PAR_RIP = "${parent_member_rip}" BRANCH_T = ${branch_time} ZOSCONST = ${zosga},${zossga} / input_dir=“.” tabs_dir=“.” grids_dir=“.” arch_dir=“.” project_id=CMIP5 model_id=MPI-ESM-LR institute_id=MPI-M source=„my model“ calendar=standard product=output gfile= MPI-M_MPI-ESM-LR.ksh cdo cmor ifile cmor.xcmor2.a ofile-c &CMORINST INPUT_DIRNAME = “${input_dir}“ TABDIR = "${tabs_dir}“ GRIDFILE_DIRNAME = "${grids_dir}“ OUTPUT_DIRNAME = "${arch_dir}“ PROJECT_TEXT = "${project_id}“ MOD_ID = "${model_id}“ INSTITUTE_ID =“${institute_id}“ SOURCE_TEXT = "${source}” CONTACT_TEXT = “${contact}” CALENDAR_TEXT = “${calendar}“ PRODUCT =„${product} ZOSCONST = ${zosga},${zossga} /

14 / 11 B. Konforme CDOs B. die cdos sollen so weit wie möglich CMIP konforme Dateien liefern Vergleiche header von allen CMIP5 Dateien in /work/ik0555/.../esmrcp85/ cdo copy “ “ “ “ cl_Amon_...._ _copy.nc cdo selname,cl “ “ “ “ cl_Amon_...._ _selname.nc cdo command “ “ “ “ cl_Amon_...._ _command.nc Die Vergleiche sind inkrementell, d.h. was schon mit ‚cdo copy‘ notiert wurde, wird beim selname-Vergleich nicht mehr erwähnt; was schon für eine Modellkomponente notiert wurde, wird beim Vergleich für eine andere Komponente nicht mehr erwähnt. 9. Juni 15

15 / 11 All realms / grids: 1.bnds => nb2 Action! 5.time:axis = "T„ geht verloren Action! 6.global history-Attribut anhängen: Action! E.g.: “Raw output...with IMDI...; CMOR rewrote...“ “Raw output...[with ‘infrastructure‘...]; CMOR rewrote...; CDO selname,cl...“ 7.tracking_id muss er-/gesetzt werden Action! 8.creation_date muss er-/gesetzt werden Action! 9.time:units = "days since’ ‘ :00:00" ; versus time:units = "days since’ ‘ :00:00" ; Action! Juni 15 B. header–Vergleich nach cdo copy

16 / 11 Realm / grid atmos: 1.var:cell_measures = “area: areacella“ geht verloren; Action! 2.Location von areacella in var:associated_files = "baseURL: 3.var:grid_type = “gaussian“ ; Action! 4.Single value dimension treatment by CMOR: double height ; height:axis = "Z" ; height:long_name = "height" ; height:positive = "up" ; height:standard_name = "height" ; height:units = "m" ; sfcWind:coordinates = "height" ; => geht verloren ; Action! 9. Juni 15 B. header–Vergleich nach cdo copy

17 / 11 B. header–Vergleich nach cdo copy Realm / grid atmos: 1.Vertical coordinate a.lev:standard_name verloren b.lev:formula = "p = ap + b*ps" ; c.lev:formula_terms = "ap: ap b: b ps: ps" ; d.lev_bnds:formula e.lev_bnds:formula_terms="ap: ap_bnds b: b_bnds ps: ps" f.lev_bnds:standard_name verloren (sollte nicht vorhanden sein CF conventions) g.lev_bnds:units verloren (“ “ “ “) h.double [ap|b](lev) verloren i.[ap|b]_bnds(lev, x); dimension x statt bnds j.float ps(time, lat, lon) verloren 2. cl:ancillary_variables = “ps ap b ap_bnds b_bnds“ (oder über “formula_terms“ regeln; dann braucht man das nicht) Juni 15

18 / 11 Realm / grid land: 1.bareSoilFrac:coordinates = “type“; Action! type:long_name = "surface type" type:standard_name = "area_type" ; 2.float landCoverFrac(time, lev, lat, lon) statt float landCoverFrac(time, type, lat, lon) ; Action! 3.char type_description(type, strlen) ; type_description:long_name = "plant functional type" ; type_description:standard_name = "area_type" ; landCoverFrac:coordinates = "type_description" ; Action! 9. Juni 15 B. header–Vergleich nach cdo copy

19 / Juni 15 B. header–Vergleich nach cdo copy

20 / Juni 15 B. header–Vergleich nach cdo copy

21 / 11 Realm / grid ocnBgchem: 1.single value vertical dimension (siehe realm/grid = atmos 4.): bfe:coordinates = "lat lon" ; statt bfe:coordinates = "depth lat lon" ; depth:axis = "Z" ; depth:long_name = "depth" ; depth:positive = "down" ; depth:standard_name = "depth" ; depth:units = "m" ; double depth ; 9. Juni 15 B. header–Vergleich nach cdo copy

22 / 11 Realm / grid atmos: 1.Vertical coordinate a.double ap_bnds(lev) verloren b.double b_bnds(lev) verloren 9. Juni 15 B. header–Vergleich nach cdo selname

23 / 11 Zu diskutieren: I.Inwieweit ist es sinnvoll, die Modelle diese Dateien erzeugen zu lassen? II.Soll cdo cmor auch GRIB Daten lesen/ausgeben können? III.Brauchen wir eine Liste mit Use-Cases?