Extrasolar giant planet in a close Triple-Star-System

Slides:



Advertisements
Ähnliche Präsentationen
Einblicke in die Welt des Saturn
Advertisements

Kleinkörper Unter den Kleinkörpern werden Asteroiden, Kometen und Meteoriten zusammengefasst, die direkt die Sonne umkreisen und dabei nicht ausreichend.
Die Solar-Stellar Connection K.G.Strassmeier. Drei Gründe warum wir sonnenähnliche Sterne erforschen sollten Sterne haben Planeten ! Nach Hipparcos war.
Pulsare.
Die Suche nach einer zweiten Erde (?)
Schwarze Löcher in den Kernen von Galaxien
Galaxien, Quasare, Schwarze Löcher Knud Jahnke, Lutz Wisotzki Astrophysikalisches Institut Potsdam.
Galaxien, Quasare, Schwarze Löcher
Physik für Studierende der Fakultät III: Columbia Unglück
Enge, separierte Doppelsternsysteme:
Enge, separierte Doppelsternsysteme: Analysemethoden Doppelsterne mit kurzen Orbitalperioden: Minuten bis wenige Tage Keplersche Gesetze: Kleine Separation.
Betreuer: Christian Fleck
Wovon Astronomen träumen...
Galaxien und ihre Entfernungsbestimmung
Wer ist am schnellsten? Manfred Jeitler Institut für Hochenergiephysik
Unser Sonnensystem (солнечная система)
Ein Vortrag von Simon Jacobs
Unser Universum Heinz Oberhummer
Das expandierende Universum
Planetenentstehung – Akkretionsscheibe
Wo liegt die Erde im Sonnensystem?
VOM MIKRO- ZUM MAKROKOSMOS
Präsentation von David und Andreas
55 Cnc hat 5 Planeten! Vera Steinecker.
Die Dichte des Universums und die Dunkle Materie Teil 2
A Model of Habitability Within the Milky Way Galaxy
Planetenmigration und Extrasolare Planeten in der 2:1 Resonanz
Chaos im Sonnensystem (Kurzüberischt)
Exoplaneten.
Gliese 581.
Schwerkraftmonster in galaktischen Zentren: Wie „wiegt” man Schwarze Löcher? Nadine Neumayer.
Kräfte bei der Kreisbewegung
Planeten 1 Diese Folien enthalten Texte, Zeichnungen oder Bilder.
Der Urknall.
COROT Mission und Ergebnisse
Gliese 581.
Extraterrestische Planeten Außerirdisches Leben?
Was ist Astronomie? - Die Wissenschaft der Gestirne, am Anfang nur Sonne und Mond - Entdeckung von Regelmäßigkeiten und Bewegung - Bestimmung von Frühling.
Unser Sonnensystem.
Kapitel VI: Der Aufbau der Sterne
Die kosmische Hintergrundstrahlung
Wie entsteht ein Schwarzes Loch?
Die Suche nach Exoplaneten
Habitable Zonen in entdeckten extrasolaren Planetensystemen Florian Herzele, Daniel Huber, Michael Prokosch.
Allgemein Galaxien sind riesige Ansammlungen aus Gas, Staub und Sternen, die durch ihre gegenseitige Anziehungskraft zusammen gehalten werden. Sie unterscheiden.
Vortrag über Planetenbahnen in Doppel- und Mehrfachsternsystemen Von Julian Janker am
Weshalb laufen Planeten manchmal rückwärts?
Weltall.
Aufgaben zur gleichförmigen Bewegung
Die Entstehung unseres Sonnensystems
Gliederung 1. Grundinformationen /Voraussetzungen für extraterrestrisches Leben 2. Sterne 2.1 Entstehung 2.2 Eigenschaften / Unterschiede und Klassifizierung.
Vortrag über Planetenbahnen in Doppel- und Mehrfachsternsystemen
Die Entstehung unseres Sonnensystems
Entstehung von Planeten
Lycée Technique de Bonnevoie
Roche-Grenze für Satelliten eines massereichen Zentralobjektes Simulation eines (idealerweise flüssigen) Satelliten, der nur durch seine eigene Gravitation.
The InfraRed Space Interferometer
Planeten außerhalb des Sonnensystems - Die Suche nach der zweiten Erde
Nachbarn unserer Sonne
Beteigeuze Der pulsierende Überriese Ein Vortrag von Dominic Kohlhöfer
Die Milchstraße – unsere Galaxie
Objektbezogenes Spektroskopie Wochenend-Seminar Carl-Fuhlrott-Sternwarte,Wuppertal Olivier Thizy.
Ein Stern entsteht.
Henning, Leon und Alina Klasse 4C
StD März, Februar 2014 Extrasolare Planeten nach Wikipedia, der freien Enzyklopädie Ein extrasolarer Planet, kurz Exoplanet, ist ein Planet außerhalb (griechisch.
Fotos Sterne, Planeten, Galaxien
Sterne und Sternentwicklung
Extrasolare Planeten.
 Präsentation transkript:

Extrasolar giant planet in a close Triple-Star-System Manuel Steinhausen 12.06.2007

Vorgehensweise Einleitung: Hintergründe, Messmethoden, bisherige Annahmen Extrasolarer Planet im Triple-Star-System HD 188753 Erklärungsversuche: Entstehung des Systems mit den heutigen Kenntnissen

Historie 1992 1995 2004 14. Juli 2005 27. April 2007 Ende Mai 2007 Erster Exoplanet um Pulsar PSR1257+12 1995 Erster Exoplanet mit Orbit um Stern Pegasus 51 (Radialgeschwindigkeitsmethode) 2004 Untergrenze: 1 AU Entfernung zu Stern mit Masse von ca. 11,2 Erdmassen 14. Juli 2005 Maciej Konacki entdeckt Exoplaneten in Triple-Star-System HD 188753, dessen Entstehung vorerst nicht zu erklären ist 27. April 2007 Kleinster Exoplanet Gliese 581 c: 1,5 fache Erdgröße und 5fache Erdmasse Ende Mai 2007 242 extrasolare Planeten in 206 Systemen Kein System mit mehr als 4 Exoplaneten bekannt Meist Gasriesen, die Zentralstern in enger Umlaufbahn umkreisen

Nachweismethoden Transitmethode Bedeckungen durch den Planeten erzeugen periodische Absenkungen der Helligkeit des Sterns, falls die Umlaufbahn so liegt, dass der Planet aus Sicht der Erde genau vor dem Stern vorbeizieht. Astrometrische Methode Bewegung des Sterns um den gemeinsamen Schwerpunkt gibt Komponenten quer zur Sichtrichtung Durch genaue Vermessung seiner Position relativ zu ferneren Sternen nachweisbar Transitmethode

Nachweismethoden Radialgeschwindigkeits-methode Falls man von der Erde aus nicht genau senkrecht auf Bahn schaut, periodische Bewegung des Sterns in Sichtrichtung messbar (Radialgeschwindigkeit) Durch Dopplereffekt nachweisbar Gravitational microlensing-Methode Verstärkung des Lichts eines Hintergrundobjekts durch Gravitationslinsenwirkung eines Vordergrundsterns Radialgeschwindigkeitsmethode

Gravitational-microlensing

Zwei verbreitete Theorien für Planetenentstehung Kernakkretionsmodell: Bildung eines festen Kerns außerhalb der ‚snowline‘ der in Richtung Scheibe migriert und Gas akkretiert (10 Erdmassen nötig!) Widerspruch: Lebensdauer Gasscheibe – 6 bis 10 Millionen Jahre Entstehungsprozess – ca. 10 Milliarden Jahre Gravitations-Instabilitäten-Modell: Dichten Gasregion in der massiven, wenig turbulente Scheibe gravitativ instabil durch Selbstgravitation Zusammenbruch und Ausbildung von Spiralarmen, die lokale Verdichtungsgebiete bilden Bemerkung/Widerspruch: Planeten ohne festen Kern möglich Schnellere Entstehung von Gasgiganten Erklärt stark exzentrische Bahnen von Exoplaneten Scheibe idealisiert!

Snowline Eis kondensiert wenn Temperatur unter 170K liegt Hayashi findet Grenze von 2,7AU (liegt da, wo Tempertur eines schwarzkörpers der direktes Sonnenlicht absorbiert und genausoviel wieder ausstrahlt 170K beträgt) In idealisiertem System: Snowline für eine Sonnenmasse bei 1,0AU

Snowline (Frost line) Eis kondensiert wenn Temperatur unter 170K liegt Hayashi findet Grenze von 2,7AU In idealisiertem System: Snowline für eine Sonnenmasse bei 1,0AU

Migration Typ I Migration: Planetesimale interagieren mit Gas der Akkretionsscheibe, gegenseitige Anziehung führt zu einer langsamen Abbremsung (Drehimpulsverlust durch Interaktion mit Scheibe und anderen Planetesimalen) und damit zu einer Migration auf das Zentralobjekt zu Typ II Migration: Nur Gasplaneten, die gross genug sind, um eine Lücke in die Akkretionsscheibe ihres Sterns zu reissen. Ausbildung von "Gezeitenarmen‘‘, die ihren Ursprung im Planeten haben und die schliesslich dessen Bahn beeinflussen. Diese Arme können, je nach Grösse und Masse, eine Migration auf den Stern zu (oder, seltener davon weg) bewirken. Massereiche Scheibe = Planet migriert nach Innen Typ III Migration: Innerer Ring wird zum Rand des äußeren geschleudert, hierdurch Migration einwärts. Äußerst schnellen Migration auf den Stern zu, die meist in der Zerstörung des migrierenden Planeten endet

Typ I Migration Typ II Migration

Migrationsprozess

Hot Jupiter Gigantische Gasriesen mit einer Masse in der Dimension von Jupiter Umlaufperiode von drei bis neun Tagen um Zentralsterne Entstehen aus Gas und verdichteter fester Materie

Vorgehensweise Einleitung: Hintergründe, Messmethoden, bisherige Annahmen Extrasolarer Planet im Triple-Star-System HD 188753 Erklärungsversuche: Entstehung des Systems mit den heutigen Kenntnissen

HD 188753AB Entfernung zur Sonne: 149 Lichtjahre zu finden im: Sternbild Schwan / Cygnus Masse der Hauptkomponente A: 1.06 Sonnenmassen Masse der Nebenkomponente B+C kombiniert: 1.63 Sonnenmassen Masse Exoplanet: 1.14 Jupitermassen Umlaufzeit des Exoplaneten um Hauptkomponente A: 3.35 Tage (also ein typischer Hot Jupiter) Umlaufbahn B+C: 6 bis 15AU Entdeckung mittels: Radialgeschwindigkeitsmethode

Binaries umkreisen sich in 156 Tagen und Zentralstern mit planetarem Begleiter in 25,6 Jahren

Radialgeschwindigkeitmethode Marciej Konacki a: HD 188753A ohne binaries b: Binaries ohne HD188753 und Exoplanet

Besonderheiten Umlaufbahn innerhalb Umlaufbahn der stellaren Begleiter (Abstand beträgt gerade mal ein Zwanzigstel der Entfernung Sonne-Erde) Durch Schwerkraftbeeinflussung der Begleiter normalerweise nicht genug Material für Entstehung von Riesenplanet Bisher Planeten in Doppel- und Dreifachsternsystemen mehr als 100AU von einem Stern entfernt

Vorgehensweise Einleitung: Hintergründe, Messmethoden, bisherige Annahmen Extrasolarer Planet im Triple-Star-System HD 188753 Erklärungsversuche: Entstehung des Systems mit den heutigen Kenntnissen

Erklärungsversuche Eislinie durch Gravitationsstörung der Binaries sehr viel näher am Zentralgestirn als bisher vermutet: Erhält durch Simulation 1,3AU für protoplanetare Scheibe Somit müsste snowline bei ~1AU liegen Kollision und Einfangen von HD 188753A inklusive Planeten Planet entstand vor Ort (in situ)

Radialgeschwindigkeitsmethode

Fehler Radialgeschwindigkeitsmethode?! Chromosphärisch-Aktive Sterne: Oberfläche (Chromosphäre) plusiert - dehnt sich aus und zieht sich wieder zusammen -> Wobble-Effekt vorgetäuscht. Spektralanalyse enttarnt chromoshärisch-aktiven Stern meist Sonnenflecken bzw. "Stern-Flecken": Sonnenflecken können Wobble-Effekt ebenfalls vortäuschen. Besonders sehr "riesige" Sonnenflecken, die über mehrere Wochen auf einer Stern-Oberfläche zu finden sind, sind die Auslöser. Parallaxe der Stern: Parallaxe der Stern in der Untersuchung vergessen, kann es schnell passieren, dass man fälschlicherweise einen Exoplaneten entdeckt, der "zufällig" wie die Erde genau in einem Jahr um seinen Zentralstern dreht. (Pulsar PSR 1829-10) Messfehler, Fehlertoleranz, Falschinterpretation: Alles weitere Fehler seitens der Astronomen, sind gemacht werden und einen Wobble-Effekt vortäuschen können. Einige moderne vermeintlich entdeckte Exoplaneten: HD 13507 b, HD 219542 B b oder HD 223084 b. Mindestmasse: Die Radialgeschwindigkeitsmethode gibt uns nur eine Mindestmasse des Planeten vor, die abhängig von der Inklination ist. Man erhält: m = m0 * sin(i)

Betrachtung möglicher Fehler Magnetische Aktivität an Oberfläche Untersuchung der Ca II H Absorptionslinie (Lamda=396,8nm) Kann ausgeschlossen werden Kein weiterer Stern auf Sichtlinie Kein Brauner Zwerg Inklination müsste < 5 o betragen Wahrscheinlichkeit liegt bei 0,38% Bei gleicher Inklination wie HD 188753AB ( i = 34 o) beträge Masse M = 2,04 Mjup

Widerlegt? Einjährige Beobachtung und Dopplermessungen mit ELODIE Spektrografen am ‚Observatoire de Haute-Provence‘ bringen neue Ergebnisse. Neuer Algorithmus TUDCOR (TwO-Dimensional CORrelation technique ). TUDCOR: Korrelation eines bekannten Spektrum eines Binary zu untersuchenden Binary-spektrum unter verschiedenen shifts. Mayor, Mazeh (Stand: 21. Febr. 2007)

Widerlegt? Einjährige Beobachtung und Dopplermessungen mit ELODIE Spektrografen am ‚Observatoire de Haute-Provence‘ bringen neue Ergebnisse. Mayor, Mazeh (Stand: 21. Febr. 2007)

Radialgeschwindigkeit Mayor, Mazeh HD 188753 Ba (ohne 156d) Je Durchschnittsgeschwindigkeiten abgezogen HD 188753A

Linearer Drift durch langperiodische Bewegung abgezogen Mayor, Mazeh Linearer Drift durch langperiodische Bewegung abgezogen 25,7 jährliche Orbitbewegung HD 188753A Unten: Restgröße (offset)

Ausblick Portegies Zwart: In einem Umkreis von 1.600 Lichtjahren sollen rund 1.200 Systeme zu finden sein, die Planeten mit drei Sonnen beherbergen. Raghavan et al. (2006): Mehr als 23% der Sterne mit einem Planeten besitzen auch einen stellaren Begleiter

Fazit "We tend to focus on looking for other solar systems around stars just like our Sun. But we are learning that planetary systems can be found around all sorts of stars." Alan Boss