Schüler unterschiedlich, Mathematik einheitlich?

Slides:



Advertisements
Ähnliche Präsentationen
Anzahl der ausgefüllten und eingesandten Fragebögen: 211
Advertisements

Wenn wir auf uns schauen, erfüllen sich unvernünftige Wünsche
Binnendifferenzierung im Mathematik-Unterricht der SEK II
Problemlösekompetenz nachhaltig entwickeln - aber wie?
5. Gestaltung von Übungen Bedeutung, Formen und Prinzipien der
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Scratch Der Einstieg in das Programmieren. Scatch: Entwicklungsumgebung Prof. Dr. Haftendorn, Leuphana Universität Lüneburg,
Klicke Dich mit der linken Maustaste durch das Übungsprogramm!
Tricks mit Zahlen. Kapitel 2 © Beutelspacher Mai 2004 Seite 2 Idee / Aufgaben In jeder Woche stelle ich Ihnen einen Zaubertrick mit Zahlen vor. Ihre Aufgaben:
PYTHAGORAS 570 v. Chr. wurde Pythagoras auf der ionischen Insel Samos geboren. Als 20-jähriger ging er in Milet bei Thales und Anaximander in die Lehre,
Problemlösen Wesentliche Tätigkeit in der Wissenschaft Mathematik
Was ich gern lese Lesetagebuch von
1. 2 Schreibprojekt Zeitung 3 Überblick 1. Vorstellung ComputerLernWerkstatt 2. Schreibprojekt: Zeitung 2.1 Konzeption des Kurses 2.2 Projektverlauf.
____________________________
Kurzformaufgaben Wie groß ist der Winkel, den der Minutenzeiger einer Uhr in der Zeit von 8:45 bis 9:05 Uhr überstreicht? 120°
Was atmet. Eine Rose. Die Haut. Ein Molekül. Holz
20:00.
Das Mayonnaiseglas und der Kaffee für alle die das Leben besser
So kannst du beide schnell berechnen.
„Küsse deine Freunde“ – FlexKom-App teilen
In der Schule.
Virtueller Rundgang Casa Mariposa in Playa del Coco.
Willkommen bei Sycarus – dem Mathematikprogramm, das neue Wege geht.
Geschlecht der Befragten Alter der Befragten Warum gehst du in ein Einkaufszentrum ?
Teil 6: Josef (1. Mose 39-50) (Fortsetzung)
Leistungsbeschreibung Brückenplanung RVS RVS
Claus H. Brasch & Martina Propf
Dokumentation der Umfrage
Gaben – Fähigkeiten entdecken und anwenden
für Weihnachten oder als Tischdekoration für das ganze Jahr
Karte 1 Lösungen Die Zahl über dem Bruchstrich nennt man Zähler und die Zahl unter dem Bruchstrich nennt man Nenner . Der Nenner gibt das Ganze an. Der.
Wolfram Thom Lehrer für Mathematik/Physik am Gymnasium Donauwörth Seminarlehrer für Pädagogik Multiplikator für Offene Unterrichtsformen der ALP Dillingen.
Gaben – Fähigkeiten entdecken und anwenden
Wir üben die Malsätzchen
warum es toll ist, ein Mann zu sein:
Deutsch 1 Kapitel 4 Die Schule
Uwe ist klug … Eine Grundschullehrerin geht zu ihrem Rektor und beschwert sich …
Passivität und Vandalismus TA Ausbildung Bern, 12. Veranstaltung 1 TA Ausbildung Bern, Passivität und Vandalismus,
PROCAM Score Alter (Jahre)
Mathematik im 1. Schuljahr
Geometrische Aufgaben
Das ist die Geschichte eines kleinen Jungen aus der Schweiz.
Symmetrische Blockchiffren DES – der Data Encryption Standard
5.Klasse 1.Stunde Allgemeine Wiederholung.
PARTENARIAT ÉDUCATIF GRUNDTVIG PARTENARIAT ÉDUCATIF GRUNDTVIG REPERES KULTURELLER ZUSAMMENHALT UND AUSDEHNUNG DER IDEEN AUF EUROPÄISCHEM.
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Großer Altersunterschied bei Paaren fällt nicht auf!
Zahlentheorie und Zahlenspiele Hartmut Menzer, Ingo Althöfer ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH Abbildungsübersicht / List.
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Gebrauchsanweisung für ein glückliches Zusammenleben
Uhrzeiten Offiziell >> Konversationell
45 Lebensweisheiten Norvegija – Šiaurės pašvaistė Music: snowdream
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Lehren und Lernen mit Dynamische Mathematik
Imperfekt Wie sagt man das mit Imperfekt
Technische Frage Technische Frage Bitte löse die folgende Gleichung:
Der kleine  Peter.
Fünf Fünf Eins Was hast du gelernt? Schreib fünf Sätze
Es war einmal ein Haus
Numbers Greetings and Good-byes All about Me Verbs and Pronouns
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wie.
Technische Kommunikation
„MATHE AUF DEUTSCH”.
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
Unterricht vorbereiten und durchführen
 Präsentation transkript:

Schüler unterschiedlich, Mathematik einheitlich? Fortschritte und weitere Entwicklungsfelder nach gut zehn Jahren SINUS

Leserbrief Badische Zeitung 2005 Bruchrechnen erweist sich in der Praxis als sinnlos „Schüler wissen wohl, wie man Brüche multipliziert, sie können mit diesem Wissen aber nichts, ganz und gar nichts anfangen.“ Nürnberg 30.06.2009 Thomas Royar

Rückblick TIMSS 1996: Bei Aufgaben in Einzel-, Partner- oder Gruppenarbeitsphasen 89 % Üben von Routineprozeduren 6 % Anwendung mathematischer Konzepte 5 % Problemlöse- und Denkaufgaben Kein Platz für individuelle Zugänge Nürnberg 30.06.2009 Thomas Royar

Offene Baustellen nach Heymann 1996 Schüler kommunizieren vorwiegend mit dem Lehrer bzw. über den Lehrer miteinander Das vorherrschende Interaktionsmuster lässt sich als Dreischritt „Lehrerimpuls – Schülerantwort(en) – Lehrerkommentar“ beschreiben Nürnberg 30.06.2009 Thomas Royar

Fehler werden sofort korrigiert Das Beherrschen eines mathematischen Gebiets wird über das Einfordern konkreter Lösungen zu vorgegebenen Aufgaben kontrolliert Fehler werden sofort korrigiert Es gibt nur richtige und falsche Antworten Fehler werden als Indikatoren für Misserfolg gedeutet Nürnberg 30.06.2009 Thomas Royar

Es gibt immer nur einen zugelassenen Lösungsweg Schülergedanken, die aus Sicht des Lehrers vom offiziellen Thema wegführen, werden nicht weitergeführt Es gibt immer nur einen zugelassenen Lösungsweg Mathematiklernen wird von den Schülern als das Nachvollziehen vom Lehrer vorgegebener Wege erlebt Nürnberg 30.06.2009 Thomas Royar

Im wesentlichen werden nur die Ergebnisse des Denkens mitgeteilt und für die anderen Unterrichtsteilnehmer „veröffentlicht“ Die im Unterricht gestellten mathematischen Aufgaben und Probleme sind eindeutig und nur auf eine Weise lösbar Nürnberg 30.06.2009 Thomas Royar

Jedes mathematische Teilgebiet steht im wesentlichen isoliert für sich Fragen nach Sinn und Bedeutung der Mathematik sind nicht Gegenstand des Mathematikunterrichts Jedes mathematische Teilgebiet steht im wesentlichen isoliert für sich Der Unterschied zwischen mathematischen Konventionen und Notwendigkeiten wird nicht thematisiert Nürnberg 30.06.2009 Thomas Royar

Verantwortlich für das Lernen der Schüler ist der Lehrer Der Mitschüler wird im wesentlichen als Konkurrent betrachtet Die allermeisten Baustellen sind in der Zwischenzeit deutlich und auf vielfache Art bearbeitet worden Nürnberg 30.06.2009 Thomas Royar

Vielleicht noch zu wenig: Das vorherrschende Interaktionsmuster lässt sich als Dreischritt „Lehrerimpuls – Schülerantwort(en) – Lehrerkommentar“ beschreiben Das Beherrschen eines mathematischen Gebiets wird über das Einfordern konkreter Lösungen zu vorgegebenen Aufgaben kontrolliert Schülergedanken, die aus Sicht des Lehrers vom offiziellen Thema wegführen, werden nicht weitergeführt Nürnberg 30.06.2009 Thomas Royar

Das vorherrschende Interaktionsmuster lässt sich als Dreischritt „Lehrerimpuls – Schülerantwort(en) – Lehrerkommentar“ beschreiben Schüleraktivierung auch durch komplexere Probleme Nürnberg 30.06.2009 Thomas Royar

Wie sieht die fehlende Figur aus? Nürnberg 30.06.2009 Thomas Royar

Zwischen Parallelen sind gleichseitige Dreiecke gezeichnet Zwischen Parallelen sind gleichseitige Dreiecke gezeichnet. Wie groß ist jeweils der grau gefärbte Anteil am ganzen Dreieck? Nürnberg 30.06.2009 Thomas Royar

Das Märchen vom Teufel und dem armen Manne Der Teufel sagte zu einem armen Manne: „Wenn du über diese Brücke gehst, will ich dein Geld verdoppeln, doch musst du jedes Mal, wenn du zurückkommst, 8 Taler für mich ins Wasser werfen.“ Als der Mann das dritte Mal zurückkehrte, hatte er keinen blanken Heller mehr. Nürnberg 30.06.2009 Thomas Royar

Diese Aufgabe eignet sich gut zum produktiven Üben Variation der Aufgabenstellung: Was wäre, wenn... Wie viele Taler müsste der Mann am Anfang haben, dass er der „Gewinner“ ist? Schreibe die Geschichte mit einem anderen Ende! Diskutiert den letzten Satz! Könnte er nach dem dritten Brückengang auch Schulden haben? Nürnberg 30.06.2009 Thomas Royar

Mögliches Vorgehen im Unterricht Einstimmung, Gewöhnung Wie bist du vorgegangen? Was hat dir geholfen die Aufgabe zu lösen? Bewusstmachung einzelner Strategien an typischen Beispielen (selbstständiges) Bearbeiten von Analogieaufgaben Kontexterweiterung, Transfer Wahl der Strategie, Begründen der Wahl Eigene Problemlöseverhalten reflektieren (aufschreiben) Nürnberg 30.06.2009 Thomas Royar

Zum Problemlösen gehört auch Fragen stellen und formulieren üben Selbstbeobachtung beim Problemlösen Selbsteinschätzung: Was kann ich gut? Was kann ich weniger gut? Verschiedene Lösungswege kennen lernen, um die eigenen Vorlieben und Talente zu entwickeln oder zu lernen, in verschiedene Richtungen zu denken Nürnberg 30.06.2009 Thomas Royar

Prinzipien und Strategien Analogieprinzip Zerlegungsprinzip Rückführungsprinzip Reduktionsprinzip Vorwärtsarbeiten Rückwärtsarbeiten Nürnberg 30.06.2009 Thomas Royar

Algorithmen und Heurismen Prozedurales Wissen Konzeptuelles Wissen (nach Hiebert) „Zuerst müssen die Techniken beherrscht werden!“ Müssen sie das wirklich immer? Nürnberg 30.06.2009 Thomas Royar

Nürnberg 30.06.2009 Thomas Royar

Probleme können zu Begriffen führen Wie viel zusammen? Summe Wie groß der Unterschied? Differenz Wie gerecht verteilt? Quotient Welcher Preis ist angemessen? Zuordnung Nürnberg 30.06.2009 Thomas Royar

Beispiel aus der Geometrie X 1 2 3 4 5 Die Karte zeigt ein Stück Land. Es gibt fünf Brunnen in diesem Gebiet. Stelle dir vor, du stehst bei X mit einer Herde von Schafen, die Durst haben. Zu welchem Brunnen gehst du? Die Wahl war natürlich nicht schwierig. Du gehst zum nächstgelegenen Brunnen. Entwickle nun eine Einteilung des Landes in fünf Gebiete, so dass zu jedem Ort in einem Gebiet der Brunnen in diesem Gebiet der nächstgelegene ist. Nürnberg 30.06.2009 Thomas Royar

Bedenken und Erfahrungen Haben die Schüler die Ausdauer, um an den Problemen „dranzubleiben“? Meistens ja Können die Schüler die Ergebnisse adäquat darstellen? Werden Ergebnisse kritisch reflektiert und systematisch validiert? Meistens nein Nürnberg 30.06.2009 Thomas Royar

Wann ist eine Lösung eine sinnvolle Lösung? Die Antwort erscheint einfach: Wenn sie „passt“. Aber das heißt oft nicht oder nicht nur, dass sie „objektiv richtig“ ist. Daher ist es wichtig, grundsätzlich mehrere Alternativen zu prüfen und gegeneinander abzuwägen Die Lehrkraft kann auch ganz bewusst suboptimale Lösungen anbieten Nürnberg 30.06.2009 Thomas Royar

Fehlerhafte Flächen bei drei „Brunnen“ Nürnberg 30.06.2009 Thomas Royar

Was „passt“ ist kontextabhängig Steckdosenaufgabe Nürnberg 30.06.2009 Thomas Royar

Das Beherrschen eines mathematischen Gebiets wird über das Einfordern konkreter Lösungen zu vorgegebenen Aufgaben kontrolliert Diagnostisches Unterrichten Nürnberg 30.06.2009 Thomas Royar

Selbstdiagnose Standortbestimmungen – Leistungsfeststellung als Grundlage individueller Förderung (3. – 7. Klasse) Stephan Hußmann und Christoph Selter Nürnberg 30.06.2009 Thomas Royar

Wann ist eine Aufgabe eine „gute“ Diagnoseaufgabe? auf Kompetenzaspekte konzentrieren Bearbeitung auf verschiedenen Niveaus (z.B. durch offene Aufgaben) zur Produktion (d. h. zur Erklärung, Beschreibung des Lösungsweges usw.) auffordern Eine Aufgabe wird dann zu einer brauchbaren diagnostischen Aufgabe, wenn sie Denkwege sichtbar machen kann Sie sollte valide und niveaudifferenzierend sein Büchter/Leuders Nürnberg 30.06.2009 Thomas Royar

Konzeptuelle Analyse (1) Diagnose in Mathematik benötigt als Grundlage detailliertes und gründliches Wissen über kognitive Prozesse beim Erwerb von mathematischem Verständnis. Dieses Wissen sollte die wichtigsten Konzepte und Fertigkeiten der mathematischen Inhaltsbereiche umfassen und etwas über die Prozesse sagen, durch die dessen Verständnis in diesem Bereich wächst. Man kann dabei von einer konzeptuellen Analyse sprechen. Sie geht davon aus, dass das Verhalten eines Kindes – gemessen an seinem Verständnis – stets vernünftig und begründet ist. Nürnberg 30.06.2009 Thomas Royar

Konzeptuelle Analyse (2) Dem mathematischen Verständnis eines Erwachsenen ist es aber oft unverständlich. Um das kindliche Vorgehen zu verstehen, muss der Erwachsene sein eigenes mathematisches Verständnis beiseite stellen und sich darum bemühen zu verstehen, wie die Dinge aus der Sicht des Kindes wohl aussehen, wenn es so vorgeht, wie es vorgeht. Sie unterscheidet sich von einer logischen Aufgaben-Analyse, die das Verständnis des Erwachsenen voraussetzt und nicht berücksichtigt, dass das in der Entwicklung befindliche Kind vieles von seinem Wissen nicht zum Gegenstand seiner Betrachtung machen kann. (Gerster) Nürnberg 30.06.2009 Thomas Royar

Niveaustufen Kennen Können Verstehen Innerhalb JEDER Niveaustufe Kein Verständnis ohne Kenntnis, keine Kenntnis ohne Verständnis Nürnberg 30.06.2009 Thomas Royar

Beispiel: Brüche addieren Niveaustufe 1: Einfache Brüche addieren können Niveaustufe 2: Auch schwierigere Brüche addieren können Niveaustufe 3: Beliebige Brüche addieren können Nürnberg 30.06.2009 Thomas Royar

So? Berechne: Nürnberg 30.06.2009 Thomas Royar

Oder besser so? Freunde haben 2 Pizzas bestellt. Sie teilen eine Pizza in vier gleiche Stücke, die andere in acht gleiche Stücke. Zeichne eine Skizze! Gib als Bruch an: Wie groß ist jeweils ein Pizzateil? Schreibe eine Rechenaufgabe mit Brüchen und löse: Zwei Stücke der einen Pizza zusammen Zwei Stücke der anderen Pizza zusammen Ein Stück der einen und eins der anderen Pizza Nürnberg 30.06.2009 Thomas Royar

(Fortsetzung) Schreibe eine Rechnung und löse: Ein Stück einer Pizza und zwei Stücke der anderen Pizza zusammen* Von jeder Pizza zwei Stücke zusammen Löse die Aufgaben aus c) und d), wenn eine Pizza in fünf Teile und die andere in sechs Teile geteilt wird. Probiere weitere „Teilungen“ aus und schreibe Rechnungen dazu auf. Nürnberg 30.06.2009 Thomas Royar

Niveaustufen Stufe 1: a), b), c) und d) mit einer Lösung Stufe 2: d) mit Variationen und e) Stufe 3: f) Nürnberg 30.06.2009 Thomas Royar

Bedingungen Diagnose ist vorläufig und unsicher braucht fachdidaktische Theoriekenntnis benötigt die Bereitschaft von Lehrerseite, sich auf offene Situationen einzulassen Nürnberg 30.06.2009 Thomas Royar

Didaktische Kompetenz Diagnostische Kompetenz Welche Voraus-setzungen sind notwendig? sind vorhanden? Welche Konzepte sind hilfreich? sind ausgebildet? Kompetenzen der Schüler erfassen + Sachkompetenz + Führungskompetenz (Weinert) Nürnberg 30.06.2009 Thomas Royar

Schülergedanken, die aus Sicht des Lehrers vom offiziellen Thema wegführen, werden nicht weitergeführt Permanente Weiterentwicklung der Unterrichtskultur Individualisierung und Differenzierung als Grundprinzip, nicht als „Extra“ Nürnberg 30.06.2009 Thomas Royar

Episode aus „Kinder und Mathematik“ Jimmy, die gute Lehrerin und die falschen Lösungen Nürnberg 30.06.2009 Thomas Royar

Beispiele für individuelle Lösungen Sabine macht mit ihren Freundinnen eine Schneeballschlacht. Sie hat schon viele Schneebälle für ihre Mannschaft vorbereitet. Die Hälfte davon gibt sie Mira, weil die besonders gut trifft. Zwei Drittel vom Rest gibt sie Lea, auch die trifft ziemlich gut. 6 Stück behält sie selbst. Nürnberg 30.06.2009 Thomas Royar

Schülerlösung 1 Nürnberg 30.06.2009 Thomas Royar

Schülerlösung 2 Nürnberg 30.06.2009 Thomas Royar

Schülerlösung 3 Nürnberg 30.06.2009 Thomas Royar

Schülerlösung 4 Frage: Wie viele Schneebälle hat Susi vorbereitet? Rechnung: Antwort: Sie hat 11 Schneebälle vorbereitet. Nürnberg 30.06.2009 Thomas Royar

Individuelle Begriffsbildung Peter Bardy: Eine Aufgabe – viele Lösungen. Grundschule 3/2002 Ein Seeschiff ging auf große Fahrt. Als es 180 Seemeilen von der Küste entfernt war, flog ihm ein Wasserflugzeug nach. Die Geschwindigkeit des Flugzeugs war zehnmal so groß wie die des Schiffes. In welcher Entfernung von der Küste holte das Flugzeug das Schiff ein? Nürnberg 30.06.2009 Thomas Royar

Eine Aufgabe… Regina Bruder in mathematik lehren, Heft 115 Nürnberg 30.06.2009 Thomas Royar

…mehrere Lösungen Nürnberg 30.06.2009 Thomas Royar

Nürnberg 30.06.2009 Thomas Royar

Nürnberg 30.06.2009 Thomas Royar

Nürnberg 30.06.2009 Thomas Royar

Aber bitte nicht… Kartoffeln Nürnberg 30.06.2009 Thomas Royar

Individualisierte Kartoffelaufgabe 2009 Ermittle Deinen individuellen Kalorienbedarf und erstelle einen individuellen Ernährungsplan mit deiner individuell bevorzugten Kartoffelsorte. Ermittle mit einer individuellen Methode den individuellen Einkaufspreis und setze ihn in Bezug zu deinen individuellen Vermögensverhältnissen. Nürnberg 30.06.2009 Thomas Royar