MAinzer MIkrotron MAMI: A precision accelerator for nucleon structure investigations Kurt Aulenbacher Reactor Training Course U-South Carolina May, 28, 2008
l: Wavelength d: d: object size l < d required resolution
Lightwaves and particle waves visible light : l=400 – 700nm For particle-waves l=h/p : E~100keV: electron microscope E~1000MeV: ‚nucleon‘ structure ‚microscope‘ l:
nucleus: a few 10-15 m (0,0001 × Diameter of Atom) Atom Kern
Proton(1919) and Neutron(1931) (Nucleons) Nucleus, z.B. Helium: Proton(1919) and Neutron(1931) (Nucleons) very complicated ‚many body‘ system n p p n Electron(1898) Proton: 10-15m, charge e+ Neutron: 10-15m, „neutral“ e (pointlike , charge e-)
kinetic Energy of Electrons: E = 100.000eV ElektrostaticAcceleration, Vacuum UHV ~ -100.000V kinetic Energy of Electrons: E = 100.000eV ( d.h. v= 54,8% •c = 164.350km/s l = 4 • 10-12m )
Microwave Resonating Structure with longitudinal field components and appr. phase shifts 25.000 W Power …allows for nearly continous energy transfer from field to particle!
surf
surf
surf
surfin’ on the wave
2 Meter, 25.000W cw Hf, 1.800.000eV Linac Section
Achieving several hundred MeV by brute force: LINAC For c.w. 800MeV required: (LINAC): - ca. 400 Sections - ca. 1km length - 15MWc.w. high frequency power
The RaceTrack Mikrotron (RTM) Much more efficient: The RaceTrack Mikrotron (RTM) 2 Dipole Magnets + n LINAC Passages z.B.: LINAC: 7,5MeV, 90Turns 675MeV total ( 125kW Hf-Power)
Three stage acceleration
Operating since 1990 for more than 100000 hours RTM 2 51 Rezirkulationen 180MeV RTM 1 18 Rezirkulationen 15MeV RTM 3 90 Rezirkulationen 850MeV LINAC 3.5MeV Elektronenquelle 100keV
still not enough: 1500 MeV desired!MAMI-C 1990-2006:MAMI-B 450 Tonnen, 1.28T still not enough: 1500 MeV desired!MAMI-C
The double sided microtron (K.H. Kaiser et al.) 250 to 2000 to 450 to 43 Turns, 855MeV 1,5GeV
Harmonic Double Sided Microtron Mikrotron (HDSM) 855MeV 1500MeV Harmonic Double Sided Microtron Mikrotron (HDSM)
The HDSM, a world wide unique microtron variant Successful start up: 19. Dezember 2006
Seit dem 23.02.2007 Experimentierbetrieb: 1.508GeV, max. 100mA, d.h. 151kW Strahlleistung Kurzer Hochstromtest: 50mA beam on target: >80% Fr., 23.02.2007, 12.00 bis Mo., 05.03.2007, 6.00
“Vielkörperstruktur stark wechselwirkender Systeme” The Goal: Understanding the ‚Nucleon‘ “Vielkörperstruktur stark wechselwirkender Systeme” Nukleon (Proton, Neutron) ~ 10-15m ? Eout, pout, Sout 2 Ein, pin, Sin Beispiel: E=1508MeV ± 0.030MeV (0.002%) I= ~ pA – 100mA Strahlposition konstant auf ~ 10mm 1 Ei, pi, Si 3 knowing 1 + 2 + 3:-get to know ? Koinzidenz-Experiments need cw-beams !
Das KAOS Spektrometer = Nachweis von Kaonen
(ca. 6500 Stunden Betrieb pro Jahr) Grundriss von MAMI C (ca. 6500 Stunden Betrieb pro Jahr) Diplomanden und Doktoranden in experimenteller und theoretischer Kern- und Teilchenphysik, Beschleunigerphysik
MAinzer MIkrotron MAMI: Practical Training: Irradiation and induced radioactivy Kurt Aulenbacher Reactor Training Course U-South Carolina May, 28, 2008
Our program this afternoon Two groups, exchanging after about 1 hour Irradiation of samples with MAMI at 855MeV and simultaneous measurement of neutron radiation field in accesible area., Hall clearance and installation of ‚cut off‘ area Investigation/identifaction of induced radioactivity: by gamma spectroscopy
Aerial view: Hier sind wir ! RTM 1 + 2 RTM 3 Accelerator and experiments are completely underground typically 10-15 meters deep below ground level!
Radiation and Radioisotopes at MAMI high power (150kW), high energy particle sourceno persons allowed in areas where accelerator operates secondary radiation : gamma rays (Bremsstrahlung up to 1500MeV) tertiary radiation: Photoneutrons (up to 1000MeV) neutral particles are more difficult to shield due to missing continous ionisation! Primary radiation disappears after shutdown, induced radioistopes may persist!
due to induced radioactivity Example:Operation modus I. MAMI-B (Halle A + B + C) Sperrbereich (’cut off’ area ) permanent cut off due to induced radioactivity
II. Exp op.: (Spektrometerhalle) 100mA bei 1.500.000.000eV Op-modus II. Exp op.: (Spektrometerhalle) 100mA bei 1.500.000.000eV = 150kW Leistung
Rückl. Vorl 300kW High power beam dump () Al-beads/Water (Vol60/40Strahlungslänge 14cm) Transferefficiency Beam-powerwater >95% Shielding 1.5 Meter heavy concrete + 6meter soil. (upwards),
are difficult to shield p High energy accelerators E>100MeV have very complicated radiation field. Proton worse than than electron. Electrons (primary) Bremsstrahlung (secondary) Photohadrons (tertiary) Neutral components are difficult to shield against: Photons and Neutrons e
Charged particles are easy to shield ! …but electrons create (neutral) gamma radiation
Interaction Gamma-radiation Photoeffect: s~E-7/2, ~Z4 dominant for E < 100 keV efficient with high nuclear charge Z Elektronen der K-Schale Comptonscattering: s~E-1, ~ Z/A dominant 100 keV < E < 10 MeV Paircreation: s~ln(E) (0<1MeV) ~Z2 dominant ~ 10 MeV < E Absorbermaterial mit hoher Ordnungszahl
Sum of cross sections and cascade High energies: Pair creation dominant: ge++e-2g2e++2e-4g4e++4e- typical length scale: ‚radiation length‘ Pb: 0.56cm/Fe:1.76cm/ heavy concrete: 5cm /Water 36cm
Pb d = 1,27 cm
Due to relativsitic effect energy transport remains concentrated Pair creation leads to a large number of ionizing particles dose increases (at first) with shielding thickness. In deeper layers main energy dissipation by compton scattering exponetial damping of energy flux and associated dose. Typical attenuation constant: l=1/(50cm2*g-1) 6 GeV Elektronen Due to relativsitic effect energy transport remains concentrated in narrow forward cone Shielding thickness at MAMI in forward direction at least 5 Meter heavy concrete (or äquivalent) lateral: 2 Meter
Photo-Neutrons Photo-Neutrons for Eg< 100 MeV by Giant resonance neutrons! for >170MeV:HE-neutrons by Pion production p+gp++n These are much more difficult to shield!
Dose rate behind thick shielding mFL … Massenbelegung λ(Q;E)Abschwächungskonstante d … Abstand zum Strahlungsort angle/Grad 30 60 90 sand 94 g/cm2 89 g/cm2 concrete 100 g/cm2 92 g/cm2 Heavy concrete 115 g/cm2 112 g/cm2 106 g/cm2 we are here… Liefert a.a.O. 54mSv/h bei 150 Watt.
X1 area in forward direction of (low power) beam dump
accessible ‚controlled area during beam dump operation. (1meter iron+ X1 area is accessible ‚controlled area during beam dump operation. (1meter iron+ 2 Meters heavy concrete shielding) Todays exercise: I) comparison of standard neutron monitor with ‚wide range‘ detector II) investigation of irradiated samples by g-spectroscopy Low power beam-set-up beam dump: irradiation of test samples (Cu,Fe,Al)