MAinzer MIkrotron MAMI: A precision accelerator

Slides:



Advertisements
Ähnliche Präsentationen
Cadastre for the 21st Century – The German Way
Advertisements

The Stuttgart connection
Service Oriented Architectures for Remote Instrumentation
PRESENTATION HEADLINE
SION Vacuum Circuit-Breakers 3AE5 and 3AE1
Energy Supply in the Region Ulm / Neu-Ulm
1 Feb 2008 Kosmologie, WS 07/08 Prof. W. de Boer 1 Vorlesung 12: Roter Faden: 1.Baryon Asymmetrie 2.Grand Unified Theories 3.Vereinheitlichung aller Kräfte.
Forschungsdatenzentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung Two Issues on Remote Data Access.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Telling Time in German Deutsch 1 Part 1 Time in German There are two ways to tell time in German. There are two ways to tell time in German. Standard.
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 10/23/07 MC production ttop6x (anoTop central sample)
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 09/25/07 Simulating Problems found in Gen6 simulation.
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 10/09/07 Simulating Problems found in Gen6 simulation.
24. April 2009 Cosmology/Supersymmetry, SS 09, Prof. W. de Boer/Prof.. Kazakov 1 Introduction Outline: 1.Basics of SM 2.Need for Supersymmetry beyond SM.
C. Kottmeier, C. Hauck, G. Schädler, N. Kalthoff
We have a magnetic field that it is very similar to the one of a dipole. Well in reality this is true close to the surface if we go far away enough it.
Wozu die Autokorrelationsfunktion?
Measurement of the 60 Fe(n, ) 61 Fe reaction at the TRIGA reactor in Mainz and future possibilities at FRANZ T. Heftrich 1, M. Mikorski 1, C. Beinrucker.
Strahlungsquelle ELBE Laser Power and Pulse Energy Micro- Pulse GunLaser necessary Laser project Q.E.Q bunch I mean P mean E pulse P mean E pulse ELBE.
Lancing: What is the future? Lutz Heinemann Profil Institute for Clinical Research, San Diego, US Profil Institut für Stoffwechselforschung, Neuss Science.
The neutron EDM: exp. vs theory Proposed limits on dn  (10-28) e·cm
LHC, 11 Jul 2008 Kai Schweda Hadron Yield Ratios Fig.3.3 1) At RHIC: T ch = 160 ± 10 MeV B = 25 ± 5 MeV 2) S = 1. The hadronic system is thermalized.
Isospin breaking a0-f0 mixing
Dumpline Status We have a leak of ~10 -4 mbar in the section inside the concrete shielding The leak is likely to be at a flange connection of the BPM (Ti/SS.
Mike Seidel on Vacuum Issues Pressure of 1x10**-5 not a problem for Undulator radiation damage due to electron-gas scattering (ca years.
Testing Novel TOF ELBE STATUS REPORT F. Dohrmann, E. Grosse, K. Heidel, B. Kämpfer, R. Kotte, L.Naumann Forschungszentrum Rossendorf Institut.
Forschungszentrum Jülich In der Helmholtz-Gemeinschaft Rolf Stassen IKP/ COSY Darmstadt 1 Status report HESR 1: RF Cavity.
„Elastische Streuung Himmelsblau Rayleighstreuung Teilchen d
5th IAEA Technical Meeting on ECRH Gandhinagar – February 2009
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
1. Austrian Sustainable Technology Showcase
Front end low Temperature
Tag um Tag, Jahr um Jahr, Tag um Tag, Jahr um Jahr, Day by day, year by year, Wenn ich durch diese Straßen geh', When I go through these streets, Seh ich.
Technische Universität München Lehrstuhl für Bauklimatik und Haustechnik Prof. Dr.-Ing. Gerhard Hausladen Technische Universität München Lehrstuhl für.
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel Bereich Energetische Biomassenutzung, Hanau Dipl.-Ing. J. Müller Bioturbine,
FINSB01FINSB02FINSB03FINSB04 Phase 2: Phase Burkhalter (Inauguration or Phase 2a): FINSB01FINSB02FINSB03 FINSB01FINSB02FINSB03FINSB04 Phase 3 (some time.
T.Ruf, N.Brook, R.Kumar, M.Meissner, S.Miglioranzi, U.Uwer D.Voong Charge Particle Multiplicity Disclaimer: Work has started only recently! I am not an.
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
Non invasive imaging of plants and plant roots in substrate with Nuclear Magnetic Resonant Imaging (NMRI) and (Sub) Terrahertz Imaging (THz) Dr. Axel Jung.
Ich möchte ein Eisberg sein. Last time … 3 icebergs Triangels Unique connections Ich möchte ein Eisberg sein
Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic.
bei in seit mit auf hinter von nach aus zu für vor.
Wortschatz der Schulhof the playground die Aula the hall
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Workers build a footpath around the vertiginous slopes of Shifou Mountain in China. Arbeiter bauen einen Weg rund um die schwin-delerregenden Wände des.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Fusszeilentext – bitte in (Ansicht – Master – Folienmaster, 1. Folie oben) individuell ändern! Danach wieder zurück in Normalansicht gehen! 1 OTR Shearography.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
Ein Projekt des Technischen Jugendfreizeit- und Bildungsvereins (tjfbv) e.V. kommunizieren.de Blended Learning for people with disabilities.
Image Processing and Analysis Introduction. How do we see things ?
Cross-Polarization Modulation in DWDM Systems
By: Jade Bowerman. German numbers are quite a bit like our own. You start with one through ten and then you add 20, 30, 40 or 50 to them. For time you.
| TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dip.-Ing. Cong Liu | 1 Various approaches to electromagnetic.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Power Supplies at BESSY II
Dative Prepositions. The dative case always follows these prepositions: – aus – out of, from, (from – place of origin) – außer – besides, except – bei.
Hier wird Wissen Wirklichkeit 1 Gravitational Radiation From Ultra High Energy Cosmic Rays In Models With Large Extra Dimensions Benjamin Koch ITP&FIGSS/University.
Institut für Österreichisches und Internationales Steuerrecht Group Project Paper Fukushima the triple disaster Hanna Pichler Judith.
KGE Kommunalgrund GmbH Entwicklungsträger der Landeshauptstadt Magdeburg Presentation for the REDIS Project at the Interim Conference.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
Carbon Nanotubes (CNTs)
Präzisions-Physik mit Neutronen / 1. Neutronenquellen
Travel with NASA from the biggest to the smallest distance of the universe.
Reading for inference. Hat Silvana Koch-Mehrin abgeschrieben? Immer neue Fundstellen in der Doktorarbeit der FDP-Spitzenfrau deuten darauf hin. Sie selbst.
1IWF/ÖAW GRAZ Data Combination David Fischer, Rumi Nakamura (IWF/OeAW)  Fluxgate: noise + distortion gets worse than the searchcoil at ~ 6 Hz.  Searchcoil:
Institut für Angewandte Mikroelektronik und Datentechnik Course and Contest Results of Phase 5 Eike Schweißguth Selected Topics in VLSI Design (Module.
Prof. Peter Mustermann | Institut xxxxx | Seite 1 Dr. Lothar Naumann | Institute of Radiation Physics | Timing RPC for prompt gamma.
Mitglied der Helmholtz-Gemeinschaft Questions to HESR 6 th March 2012 PANDA-meetingDieter Prasuhn.
Zeitlich veränderliche Ströme
 Präsentation transkript:

MAinzer MIkrotron MAMI: A precision accelerator for nucleon structure investigations Kurt Aulenbacher Reactor Training Course U-South Carolina May, 28, 2008

l: Wavelength d: d: object size l < d required resolution

Lightwaves and particle waves visible light : l=400 – 700nm For particle-waves l=h/p : E~100keV: electron microscope E~1000MeV: ‚nucleon‘ structure ‚microscope‘ l:

nucleus: a few 10-15 m (0,0001 × Diameter of Atom) Atom Kern

Proton(1919) and Neutron(1931) (Nucleons) Nucleus, z.B. Helium: Proton(1919) and Neutron(1931) (Nucleons) very complicated ‚many body‘ system n p p n Electron(1898) Proton: 10-15m, charge e+ Neutron: 10-15m, „neutral“ e (pointlike , charge e-)

kinetic Energy of Electrons: E = 100.000eV ElektrostaticAcceleration, Vacuum UHV ~ -100.000V kinetic Energy of Electrons: E = 100.000eV ( d.h. v= 54,8% •c = 164.350km/s  l = 4 • 10-12m )

Microwave Resonating Structure with longitudinal field components and appr. phase shifts 25.000 W Power …allows for nearly continous energy transfer from field to particle!

surf

surf

surf

surfin’ on the wave

2 Meter, 25.000W cw Hf, 1.800.000eV Linac Section

Achieving several hundred MeV by brute force: LINAC For c.w. 800MeV required: (LINAC): - ca. 400 Sections - ca. 1km length - 15MWc.w. high frequency power

The RaceTrack Mikrotron (RTM) Much more efficient: The RaceTrack Mikrotron (RTM) 2 Dipole Magnets + n LINAC Passages z.B.: LINAC: 7,5MeV, 90Turns  675MeV total ( 125kW Hf-Power)

Three stage acceleration

Operating since 1990 for more than 100000 hours RTM 2 51 Rezirkulationen 180MeV RTM 1 18 Rezirkulationen 15MeV RTM 3 90 Rezirkulationen 850MeV LINAC 3.5MeV Elektronenquelle 100keV

still not enough: 1500 MeV desired!MAMI-C 1990-2006:MAMI-B 450 Tonnen, 1.28T still not enough: 1500 MeV desired!MAMI-C

The double sided microtron (K.H. Kaiser et al.) 250 to 2000 to 450 to 43 Turns, 855MeV  1,5GeV

Harmonic Double Sided Microtron Mikrotron (HDSM) 855MeV 1500MeV Harmonic Double Sided Microtron Mikrotron (HDSM)

The HDSM, a world wide unique microtron variant Successful start up: 19. Dezember 2006

Seit dem 23.02.2007 Experimentierbetrieb: 1.508GeV, max. 100mA, d.h. 151kW Strahlleistung Kurzer Hochstromtest: 50mA beam on target: >80% Fr., 23.02.2007, 12.00 bis Mo., 05.03.2007, 6.00

“Vielkörperstruktur stark wechselwirkender Systeme” The Goal: Understanding the ‚Nucleon‘ “Vielkörperstruktur stark wechselwirkender Systeme” Nukleon (Proton, Neutron) ~ 10-15m ? Eout, pout, Sout 2 Ein, pin, Sin Beispiel: E=1508MeV ± 0.030MeV (0.002%) I= ~ pA – 100mA Strahlposition konstant auf ~ 10mm 1 Ei, pi, Si 3 knowing 1 + 2 + 3:-get to know ? Koinzidenz-Experiments need cw-beams !

Das KAOS Spektrometer = Nachweis von Kaonen

(ca. 6500 Stunden Betrieb pro Jahr) Grundriss von MAMI C (ca. 6500 Stunden Betrieb pro Jahr) Diplomanden und Doktoranden in experimenteller und theoretischer Kern- und Teilchenphysik, Beschleunigerphysik

MAinzer MIkrotron MAMI: Practical Training: Irradiation and induced radioactivy Kurt Aulenbacher Reactor Training Course U-South Carolina May, 28, 2008

Our program this afternoon Two groups, exchanging after about 1 hour Irradiation of samples with MAMI at 855MeV and simultaneous measurement of neutron radiation field in accesible area., Hall clearance and installation of ‚cut off‘ area Investigation/identifaction of induced radioactivity: by gamma spectroscopy

Aerial view: Hier sind wir ! RTM 1 + 2 RTM 3 Accelerator and experiments are completely underground typically 10-15 meters deep below ground level!

Radiation and Radioisotopes at MAMI high power (150kW), high energy particle sourceno persons allowed in areas where accelerator operates secondary radiation : gamma rays (Bremsstrahlung up to 1500MeV) tertiary radiation: Photoneutrons (up to 1000MeV) neutral particles are more difficult to shield due to missing continous ionisation! Primary radiation disappears after shutdown, induced radioistopes may persist!

due to induced radioactivity Example:Operation modus I. MAMI-B (Halle A + B + C) Sperrbereich (’cut off’ area ) permanent cut off due to induced radioactivity

II. Exp op.: (Spektrometerhalle) 100mA bei 1.500.000.000eV Op-modus II. Exp op.: (Spektrometerhalle) 100mA bei 1.500.000.000eV = 150kW Leistung

Rückl. Vorl 300kW High power beam dump () Al-beads/Water (Vol60/40Strahlungslänge 14cm) Transferefficiency Beam-powerwater >95% Shielding 1.5 Meter heavy concrete + 6meter soil. (upwards),

are difficult to shield p High energy accelerators E>100MeV have very complicated radiation field. Proton worse than than electron. Electrons (primary) Bremsstrahlung (secondary) Photohadrons (tertiary) Neutral components are difficult to shield against: Photons and Neutrons e

Charged particles are easy to shield ! …but electrons create (neutral) gamma radiation

Interaction Gamma-radiation Photoeffect: s~E-7/2, ~Z4 dominant for E < 100 keV efficient with high nuclear charge Z Elektronen der K-Schale Comptonscattering: s~E-1, ~ Z/A dominant 100 keV < E < 10 MeV Paircreation: s~ln(E) (0<1MeV) ~Z2 dominant ~ 10 MeV < E Absorbermaterial mit hoher Ordnungszahl

Sum of cross sections and cascade High energies: Pair creation dominant: ge++e-2g2e++2e-4g4e++4e- typical length scale: ‚radiation length‘ Pb: 0.56cm/Fe:1.76cm/ heavy concrete: 5cm /Water 36cm

Pb d = 1,27 cm

Due to relativsitic effect energy transport remains concentrated Pair creation leads to a large number of ionizing particles dose increases (at first) with shielding thickness. In deeper layers main energy dissipation by compton scattering exponetial damping of energy flux and associated dose. Typical attenuation constant: l=1/(50cm2*g-1) 6 GeV Elektronen Due to relativsitic effect energy transport remains concentrated in narrow forward cone Shielding thickness at MAMI in forward direction at least 5 Meter heavy concrete (or äquivalent) lateral: 2 Meter

Photo-Neutrons Photo-Neutrons for Eg< 100 MeV by Giant resonance neutrons! for >170MeV:HE-neutrons by Pion production p+gp++n These are much more difficult to shield!

Dose rate behind thick shielding mFL … Massenbelegung λ(Q;E)Abschwächungskonstante d … Abstand zum Strahlungsort angle/Grad 30 60 90 sand 94 g/cm2 89 g/cm2 concrete 100 g/cm2 92 g/cm2 Heavy concrete 115 g/cm2 112 g/cm2 106 g/cm2 we are here… Liefert a.a.O. 54mSv/h bei 150 Watt.

X1 area in forward direction of (low power) beam dump

accessible ‚controlled area during beam dump operation. (1meter iron+ X1 area is accessible ‚controlled area during beam dump operation. (1meter iron+ 2 Meters heavy concrete shielding) Todays exercise: I) comparison of standard neutron monitor with ‚wide range‘ detector II) investigation of irradiated samples by g-spectroscopy Low power beam-set-up beam dump: irradiation of test samples (Cu,Fe,Al)