Handhabung von Thoraxdrainagesystemen

Slides:



Advertisements
Ähnliche Präsentationen
Die folgende Präsentation illustriert die Teilkapitel 5. 2 bis 5. 4
Advertisements

Aggregatzustände.
Station 1 – Wie viel Druck kannst Du aushalten?
3 Versuche zum Aufheizen von Wasser
Wie lange brennt das „Lebenslicht“ ?
Beispiel für einen Leittext – Eine Dampfmaschine in Betrieb nehmen
Wahrnehmung der räumlichen Tiefe von Objekten
Biomechanik des Schwimmens
Der merkwürdige Hüpfkitt oder: Wie man eine Wette gewinnt.
Der Blutkreislauf Aufbau des doppelt geschlossenen Systems und der Venen, Arterien und Kapillaren.
Ballons Lisa & Lisa.
Asthma / Allergie (3./4. Klasse)
Asthma / Allergie (1./2. Klasse)
Microstretching Anwendungsregeln für Microstretching
KOD der einzelnen Patienten
Im Vergleich: Computer Auto.
Das Transportsystem unseres Körpers
Die Energiespar AG.
Physik für Mediziner und Zahnmediziner
Teilchenmodell Modelle helfen uns zu verstehen, was auf der Ebene der kleinsten Teilchen geschieht.
Wenn die Dritten den letzten Nerv rauben ...
Die bunte Seite Argumentationshilfe beim Vergleich zwischen
Übungen für den Geist 1.
Wiederbelebung mit Defibrillation
IHR meine lieben Freunde
Hydro- und Aerostatik Der Druck.
Druck in Flüssigkeiten (und Festkörpern)
Hydro- und Aerostatik Druck in Gasen.
Schweredruck und Auftrieb
Reibungskraft an einer Kugel in laminarer Strömung
Reibungskraft an einer Kugel in laminarer Strömung
Aufgabenstellung 2: T2 Schmeckt´s auch?
Schweredruck und Auftrieb
Hydro- und Aerostatik Der Druck.
Wie fit zu bleiben.
THORAXTRAUMA Arten des Thoraxtraumas Komplikationen Therapie.
(„Aktueller Vortrag“)
Warum haben Männer keinen Busen?
Gasaustausch Partialdruck ist der Druck, den ein einzelnes Gas in einer Gasmischung ausübt.
CD-ROM Drehbuch rechter Vorhof
Im Vergleich: Computer Auto.
Das Foucaultsche Pendel
Warum haben Männer keinen Busen?
Aufgabe Ein Gefäss hat einen Zufluss und zwei Abflüsse. Die Ströme sind durch folgende Funktion gegeben: IV1 = (0.40 l/s2)t l/s, IV2 = l/s,
Biologische Psychologie I
Physik-Quiz 6. Klasse.
Aggregatzustände Ulla Lehmann.
Zwangskraft Prinzip der Statik Gewichtskraft.
Management, Führung & Kommunikation
15. Das elektrische Feld Ein Feld ist ein Raum, in dem jedem Punkt ein bestimmter Wert einer physikalischen Größe zugeordnet wird.
Was passiert, wenn du den Luftballon aufbläst?
Aufgaben zur Lesekiste Papierflieger (6)
Rd2 Versuchsübersicht: „Wir zaubern mit Reibung“
Fit Wichtig ist jede Übung 30 Sekunden durchführen. Dabei muss zwischen den Übungen eine 5 Sekunden Pause vorlegen Bei der ersten Übung ist der Hampelmann.
Alkoholvergiftungen Methylalkohol und Ethylalkohole.
Wärmelehre Lösungen.
Tips zu den Hausaufgaben:
Kapitel 4: Statik in kontinuierlichen Medien
Aufgaben zur Lesekiste „Die haftenden Gläser (10)“
Arterien und Venen                       .
Cartesischer Taucher by Bernd Menia © to Florian Posselt.
3 Technik: Punktion parallel zum Schallkopf, mit Navi In dieser Technik sehen Sie die Nadel als weiße Linie im Ultraschallbild, wenn diese von einer Bildseite.
ResA am Arbeitsplatz Das Vorgehen ist angelehnt an „5 S“ und bietet Ihnen die Möglichkeit das Konzept der 5 Disziplinen ressourcenschonenden Arbeitens.
Stereoskopische Ansichten von der Welt oder „Himmlische Körper in 3D“
Weiterbildung interdisziplinäre Notfallmedizin für Assistenzärzte vom April 2016 Pleurapunktion Anke Bechler OÄ Medizin LUKS Sursee.
Blutungen.
Übung Zungendiagnostik
Clicker-Fragen Atmung
Physikalische Hinweise zum „Papierflieger (6)“
Physikalische Hinweise zu den „Haftenden Bechern (10)“
 Präsentation transkript:

Handhabung von Thoraxdrainagesystemen

Was Sie lernen werden Anatomie & Physiology des Thorax bezogen auf Thoraxdrainagen Atemmechanismen Zustände, die eine pleurale Thoraxdrainage erfordern Grundlagen von Thoraxdrainagen (3-Flaschen-System) Geschlossene Systeme

Die Thoraxhöhle Dieser Raum ist definiert: Sternum anterior Thoraxwirbel posterior Rippen lateral Diaphragma inferior “Thoraxwand” besteht aus Rippen, Sternum, Thorax-wirbel verflochten mit Intercostalmuskulatur Das Diaphragma ist der “Boden” der Thoraxhöhle

Die Thoraxhöhle Rechte Lunge Linke Lunge Mediastinum Herz Aorta und grosse Gefässe Ösophagus Trachea Thymus

Die Atmung: Inspiration Gehirn signalisiert dem Zwerchfellnerv Zwerchfellnerv stimuliert das Diaphragma (Muskel) zu kontrahieren Wenn das Diaphragma kontrahiert, bewegt es sich abwärts, wobei sich die Thoraxhöhle vergrössert (behalten Sie das im Gedächtnis bis wir die Physik diskutieren)

Wie gelangt die Luft in die Lungen? Physik macht Spaβ! Wenn Sie die Prinzipien des Gasflusses verstehen, werden Sie Thoraxdrainagen verstehen Luft bewegt sich durch Druckveränderungen

Physik von Gasen Luft besteht aus Gasmolekülen Gasmoleküle in einem Behälter kollidieren und schaffen eine Kraft Druck ist der Kraftbetrag, der von den sich bewegenden und kollidierenden Gasmolekülen geschaffen wird

Physik von Gasen: Boyle’sches Gesetz Wenn die Temperatur konstant ist, steigt der Druck umgekehrt proportional zum Volumen

Physik von Gasen: Boyle’sches Gesetz Wenn das Volumen eines Behälters steigt, sinkt der Druck Wenn das Volumen eines Behälters abnimmt, steigt der Druck Wenn Sie versuchen, so viele Leute wie möglich in ein Auto zu quetschen, stehen sie unter viel höherem Druck in einem VW als in einem VW Bus

Physik von Gasen Wenn zwei Gebiete unterschiedlichen Druckes kommunizieren, wird sich Gas von dem Gebiet mit höherem Druck zu dem mit niederigerem Druck bewegen Diese Bewegung der Luft verursacht “air flow”. Ein Hochdrucksystem nahe eines Niederdrucksystems in der Atmosphäre.

Physik von Gasen Ein anderes Beispiel… Gefüllter Ballon = HOHER (POSITIV) DRUCK Atmosphäre = NIEDRIGER DRUCK, Platzt der Ballon, dann strömt Luft von einem Hochdruckgebiet im Innern des Ballons zum Tiefdruckgebiet in der Atmosphäre

Die Atmung: Inspiration Wenn das Diaphragma kontra-hiert, bewegt es sich abwärts, wobei das Volumen des Thorax erhöht wird Wenn das Volumen steigt, sinkt der Druck im Inneren Luft strömt aus einem Hochdruckgebiet, der Atmosphäre, in ein Tiefdruckgebiet, den Lungen Der Druck in den Lungen heisst Intrapulmonarer Druck

Die Atmung: Exspiration Expiration: Wenn die Stimula-tion des Zwerchfellnervs endet Diaphragma relaxiert und be-wegt sich in der Brust aufwärts Dies reduziert das Volumen der Thoraxhöhle Wenn das Volumen abnimmt, erhöht sich der intrapulmonale Druck Luft strömt aus den Lungen zum niedrigeren Atmosphären-druck

Die Atmung Erinnern Sie sich, dass dies normalerwei-se ein unbewusster Vorgang ist Die Lungen springen natürlich zurück, so dass Expiration die “Ruheposition” wiederherstellt Vor allem bei Atemwegsobstruktionen kann Expiration erhöhte Atemarbeit erfor-dern, so dass die Bauchmuskeln die Luft aus den Lungen zu pressen versuchen

Anatomie der Pleura Die Lungen sind von einem dünnen Gewebe umgeben, der sog. Pleura, einer fortlaufenden, über sich selbst gefalteten Membran Parietale Pleura bedeckt die Brustwand Viszerale Pleura bedeckt die Lungen (manchmal auch pulmonale Pleura)

Pleuraflüssigkeit: Ca. 25mL pro Lunge Anatomie der Pleura Visceral pleura Normal sind die beiden Membra-nen durch eine Flüssigkeit, der Pleuraflüssigeit getrennt Sie reduziert Rei-bung, wodurch die Pleura beim Atmen leichter gleiten kann Parietal pleura Lung Intercostal muscles Ribs Pleuraflüssigkeit: Ca. 25mL pro Lunge

Anatomie der Pleura Der Raum zwischen den beiden Pleurae heisst Pleuraspalt Das Vakuum (Unterdruck) im Pleuraspalt hält die beiden Pleurae zusammen und ermöglicht den Lungen Erweiterung und Kontraktion Während der Inspiration beträgt der Druck im Pleuraspalt etwa-8cmH20 (unter Atmosphäre) Während der Exspiration beträgt der Druck im Pleuraspalt etwa nur -4cmH20

Drücke Intrapulmonaler Druck (der Druck in der Lunge) steigt und fällt während der Atmung Entspricht end-expiratorisch dem Atmosphären-druck (definiert als 0 cmH2O, da andere Drücke damit als Basis verglichen werden) Der intrapleurale Druck verändert sich ebenfalls bei der Atmung: ~ 4 cmH2O weniger als der intrapul-monale Druck Die Druckdifferenz von 4 cmH2O über die gesamte alveoläre Wand erzeugt die Kraft, damit die Lungen an der Thoraxwand haften bleiben

Wenn Drücke unterbrochen werden Intrapleuraler Druck: -8cmH20 Wenn Luft oder Flüssig-keit in den Pleuraspalt zwischen parietale and viszerale Pleura ein-dringt, vermindert sich der Druckunterschied von normal -4cmH20, der die Lunge an der Brustwand hält, und die Lunge kollabiert Intrapulmonaler Druck: -4cmH20

Zustände, die eine Thoraxdrainage erfordern Visceral pleura Pleural space Luft zwischen den beiden Pleurae: Pneumothorax Parietal pleura

Zustände, die eine Thoraxdrainage erfordern Blut zwischen den beiden Pleurae: Hämothorax oder Hämatothorax

Zustände, die eine Thoraxdrainage erfordern Transsudat oder Exsudat im Pleuraspalt: Pleuraerguss

Zustände, die eine Thoraxdrainage erfordern: Pneumothorax Tritt auf, wenn eine Verletzung der Lungenoberfläche in den Atemwegen oder der Brustwand – oder beidem – vorliegt Die Verletzung bewirkt das Eindringen von Luft in den Pleuraspalt, wodurch sich ein Zwischenraum bildet

Zustände, die eine Thoraxdrainage erfordern: Offener Pneumothorax Verletzung der Brust-wand (Mit oder ohne Lungenpunktion) Bewirkt Eindringen atmosphärischer Luft in den Pleuraspalt Penetrationstrauma: Stich, Schuss, Pfählung Operation Photo courtesy trauma.org

Zustände, die eine Thoraxdrainage erfordern: Geschlossener Pneumothorax Brustwand ist inktakt Riss der Lunge oder der viszeralen Pleura (oder Atemweges) er-laubt das Eindringen von Luft in den Pleura-spalt

Zustände, die eine Thoraxdrainage erfordern: Offener Pneumothorax Ein offener Pneumothorax wird auch “sucking chest wound” genannt Durch die Druckunterschiede im Thorax, die normalerweise während der Atmung auftreten, gelangt Luft durch die Öffnung in der Brustwand und wieder hinaus Schlimmer Anblick und Klang, aber die Verletzung funktioniert wie ein Ventil, da-durch kein Überdruck durch Lufteinschluss

Zustände, die eine Thoraxdrainage erfordern: Geschlossener Pneumothorax Bei einem geschlosse-nen Pneumothorax kann ein spontan at-mender Patient einen Druckausgleich über die kollabierte Lunge haben Der Patient wird Symp-tome zeigen, ist aber nicht vital gefährdet

Zustände, die eine Thoraxdrainage erfordern: Spannungspneumothorax Ein Spannungspneumothorax kann tödlich sein Brustwand ist intakt Luft gelangt durch die Lunge oder Atemwege in den Pleuraspalt und hat keinen Ausweg Es gibt kein “Ventil” zur Atmosphäre wie beim offenen Pneumothorax Lebensgefährlich bei Überdruckbeatmung

Zustände, die eine Thoraxdrainage erfordern: Spannungspneumothorax Spannungspneumothorax tritt auf, wenn ein geschlossener Pneumothorax einen zunehmenden Überdruck im Pleuraspalt verursacht Dieser Druck verdrängt dann das Mediastinum (Herz und grosse Gefässe)

Zustände, die eine Thoraxdrainage erfordern: Mediastinalverschiebung Eine Mediastinalver-schiebung tritt auf, wenn der Druck so gross wird, dass er Herz und grosse Gefässe auf die “unbe-troffene” Seite des Tho-rax verdrängt Diese Strukturen werden durch den Druck so komprimiert, dass der Blutfluss beeinträchtigt ,oder unterbrochen wird Mediastinal shift

Zustände, die eine Thoraxdrainage erfordern: Mediatinalverschiebung Eine Mediastinalverschiebung kann schnell zu einem Kardiovasculären Kollaps führen Vena cava und rechtes Herz können den venösen Rückfluss nicht aufnehmen Ohne venösen Rückfluss gibt es keinen kardialen Output mehr Kein kardialer Output = Herz-Kreislaufstill-stand führt zum TOD!!!

Zustände, die eine Thoraxdrainage erfordern: Spannungspneumothorax Bei externem Druck hilft CPR nicht, da das Herz keinen venösen Rückstrom akzeptiert Sofortige, lebensrettende Massnahme ist eine Punktion, um den Druck zu mindern und anschlieβend den Thoraxkatheter zu legen Photos courtesy trauma.org

Zustände, die eine Thoraxdrainage erfordern: Hämothorax Hämothorax tritt nach Thoraxoperationen und bei vielen Traumata auf Wie beim Pneumothorax wird der negative Druck zwischen den Pleurae unterbrochen, und die Lunge wird abhängig von der Blutmenge, die eintritt kollabieren Das Risiko einer Mediastinalverschiebung ist unbedeutend, da der Blutverlust, der notwendig wäre, diese Verschiebung zu verursachen, lebensbedrohlich ist

Zustände, die eine Thoraxdrainage erfordern: Hämothorax Ein Hämothorax kann am Besten auf einem Röntgenbild in auf-rechter Position diag-nostiziert werden Jede Flüssigkeit, die dabei den Rippen-Zwerchfell-Winkel verdeckt, erfordert eine Thoraxdrainage Luft/Flüssigkeitswulst Photos courtesy trauma.org

Zustände, die eine Thoraxdrainage erfordern: Pleuraerguss Flüssigkeit im Pleuraspalt = Pleuraerguss Transsudat ist eine klare Flüssigkeit, die sich im Pleuraspalt ansammelt, wenn Flüssigkeits-verschiebungen im Organismus stattfinden, wie z. B. CHF (Congestive Heart Failure), Fehlernährung, Nieren- und Leberversagen Exsudat ist eine klare Flüssigkeit mit Zellresten und Proteinen, die sich ansammelt, wenn die Pleurae von bösartigen Tumoren oder Erkrankungen wie Tuberkulose und Pneumonie betroffen sind

Therapie solcher Zustände 1. Entfernung von Flüssigkeit und Luft so schnell wie möglich 2. Verhinderung von Luft- und Flüssigkeitsrückfluss in den Pleuraspalt Wiederherstellung des Unterdruckes im Pleuraspalt um die Lunge wieder voll zu entfalten

Entfernung von Luft und Flüssigkeit Eine Thorakotomie schafft eine Öffnung in der Brustwand, durch die ein Thoraxkatheter platziert wird, der es erlaubt, Luft und Flüssigkeit aus dem Thorax abfliessen zu lassen

Entfernung von Luft und Flüssigkeit Mit einer Klemme über der Rippe präparieren, um Nerven und Gefässe nicht zu verletzen Die Klemme zum Spreizen der Muskeln öffnen Kleine Inzision Klemme hält Thoraxkat-heter und platziert ihn Mit Finger wird der Pleuraspalt erkundet, um scharfe Instrumente zu meiden

Entfernung von Luft und Flüssigkeit Stelle wählen Katheter mit Brustwand vernähen Mit Finger erkunden Platzierung des Thorax-katheters mit Klemme Photos courtesy trauma.org

Entfernung von Luft und Flüssigkeit mittels Thoraxkatheter Auch “Thoraxtubus” Unterschiedliche Grössen Von Kindern bis Erwachsenen Klein für Luft, gross für Flüssigkeit Unterschiedliche Konfigurationen Curved oder straight Materialtypen PVC Silicone Coated/Non-Coated Heparin Reibungsminderung

Entfernung von Luft oder Flüssigkeit nach Thoraxoperation Am Ende des Ein-griffs macht der Chirurg eine “Stich-wunde” in den Tho-rax, um den Tho-raxkatheter im Pleuraspalt plat-zieren zu können

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Thoraxkatheter wird verbunden mit einer Thoraxdrainage Erlaubt das Abfliessen von Luft und Flüssigkeit Verfügt über ein 1-Weg-Ventil, um Luft oder Flüssigkeit daran zu hindern, in den Pleuraspalt zurück zu fliessen Zur Schwerkraftdrainage so entwickelt, dass die Drainage unterhalb des Thoraxkatheters liegt (Schwerkraft immer nach unten gerichtet)

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Wie funktioniert ein Thoraxdrainagesystem? Es dreht sich alles um Flaschen und Strohhalme

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Einfachstes Konzept Mit dem Katheter ver-bundener Strohhalm ist 2cm unterhalb des Was-serspiegels platziert (Water Seal) Luft kann den Strohhalm verlassen, jedoch nicht zurückgesogen werden Luft kann entweichen (offen zur Atmosphäre) Schlauch zum Thoraxkatheter

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Dieses System funktioniert nur, wenn Luft aus dem Pleuraspalt entweicht Wenn Flüssigkeit gefördert wird, wird sie dem “Water Seal” zugefügt und die Tiefe vergrössert Wenn sich die Tiefe des “Water Seal” vergrössert, wird es für Luft schwerer zu entweichen. Daher kann Luft im Pleuraspalt verbleiben

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Für eine Drainage wurde eine zweite Flasche hin-zugefügt Die erste Flasche sammelt die Drainage Die zweite Flasche ist das ”Water Seal” Durch die zweite Flasche bleibt das “Water Seal” bei 2cm Luft kann entweichen (offen zur Atmosphäre) Schlauch zum Thoraxkatheter 2cm Wasser Sammel-behälter

Verhinderung von Luft- oder Flüssigkeitsrückfluss in den Pleuraspalt Das 2-Flaschen-System ist der Schlüssel für die Thoraxdrainage Eine Sammelkammer für die Flüssigkeit Ein 1-Weg-Ventil verhindert den Rückfluss in den Pleuraspalt

Wiederherstellung des Unterdruckes im Pleuraspalt Vor vielen Jahren glaubte man, dass immer ein Sog benötigt würde, um Luft oder Flüs-sigkeit aus dem Pleuraspalt zu saugen und die Lunge an die parietale Pleura zu ziehen Gegenwärtige Forschung hat gezeigt, dass der Sog ein Luftleck aus der Lunge vergrö-ssern kann, da Luft hindurch “gesogen” wird. Ohne Sog verschliesst es sich selbst Wenn Sog benötigt wird, braucht es eine dritte Flasche

Wiederherstellung des Unterdruckes im Pleuraspalt Schlauch zur Sogquelle Luft kann entweichen(offen zur Atmosphäre) Schlauch zum Thoraxkatheter “Strohhalm” 20cm unter Wasserspiegel Sammelbehälter Suction control 2cm fluid water seal Collection bottle

Wiederherstellung des Unterdruckes im Pleuraspalt Der “Strohhalm” in der Sogkontrollkammer (normal bis 20cmH2O) limitiert den Unterdruck der im Pleuraspalt anliegen kann – hier -20cmH2O Der “Strohhalm” ist offen zur Atmosphäre Wenn der Sog erhöht wird, wird das Wasser “blubbern”, was anzeigt, dass Luft einge-sogen wird um das Vakuum zu limitieren

Wiederherstellung des Unterdruckes im Pleuraspalt Die Wassertiefe in der Sogkontrollkammer zeigt den maximalen im Pleuraspalt anliegenden Unterdurck an, NICHT die Anzeige an der Sogquelle

Wiederherstellung des Unterdruckes im Pleuraspalt Es gibt keine wissenschaftlichen Belege für den Sog von -20cmH2O, es handelt sich hier um empirischen Standard Ein höheres Vakuum kann die Drainage beschleunigen, jedoch kann es auch das Gewebe im Thorax beschädigen

Wie eine Thoraxdrainage funktioniert Expiratorischer positiver Druck des Patienten fördert die Drainage zusätzlich (Husten, Valsalva) Schwerkraft fördert die Flüssigkeitsdraina-ge, solange das System unter Thoraxni-veau liegt Sog kann die Drainagegeschwindigkeit verbessern, mit der Luft oder Flüssigkeit gefördert werden

Von Flaschen zur Box Das Flaschen-Prinzip funktionierte, war jedoch sehr unhandlich und mit 16 Teilen sowie 17 Verbindungen sehr schwierig im Set-Up unter sterilen Aspekten Im Jahre 1967 wurde die erste 1-teilige Plastikbox (Einweg) erfunden Die Box hatte alle Eigenschaften, die die Flaschen hatten – und sogar noch mehr!

Von Flaschen zur Box Sogquelle Vom Patienten Vom Patienten Sogkon-trollkam-mer “Water Seal”-Kammer Sammel-behälter Sog-kontroll- Kammer “Water Seal”- Kammer Sammel-kammer

Von der Box zum “Bedside”-System

“Bedside”-System Drainage unter Thoraxni-veau halten für Schwerkraft-drainage Dies wird einen Druckgradienten schaffen mit relativ höherem Druck im Thorax Flüssigkeit oder Luft bewegt sich von einem Hochdruck-gebiet in ein Tiefdruckgebiet Selbes Prinzip wie erhöhte Infusionsflasche

Monitoring des intrathorakalen Druckes “Water Seal”- und Sogkontrollkammer erlau-ben Monitoring des intrathorakalen Druckes Schwerkraftdrainage ohne Sog: Wassersäu-le in ”Water Seal “-Kammer = intrathoraka-ler Druck (Die Kammer ist ein kalibriertes Manometer) Langsame, schrittweise Erhöhung der Wassersäule über einige Zeit bedeutet höhere negative Drücke im Pleuraspalt und signalisiert einen Heilungsprozess Ziel ist ca. -8cmH20 Mit Sog: Wassersäule in Sogkontrollkammer+ Wassersäule in”Water Seal”-Kammer = intrathorakaler Druck

Luftleckmonitoring “Water Seal” ist ein Fenster in den Pleuraraum Nicht nur für Druck Wenn Luft den Thorax ver-lässt, ist hier ein “blubbern” zu sehen Luftleckanzeiger (1-5) schafft die Möglichkeit das Luftleck zu “vermessen” und den Ver-lauf zu beurteilen – wird es besser oder schlimmer?

Set-Up der Drainage Befolgen Sie die Anweisungen des Herstellers um die “Water Seal”-Kammer mit 2cm Wasser zu befüllen und 20cm in die Sogkontrollkammer einzufüllen (es sei denn ein anderer Sog ist verordnet) Verbinden Sie den Patientenschlauch mit dem Thoraxkatheter Verbinden Sie den “Suction”-Anschluss der Drainage mit der Sogquelle und erhöhen Sie den Sog, bis es leicht “blubbert”

Set-Up der Sogquelle Sie müssen keine Spaghetti kochen! Starkes “Blubbern” ist laut und stört die meisten Patienten Fördert ebenso eine rasche Verdunstung in der Kammer, was den Sog vermindert Zu grosses “Blubbern” ist klinisch sinnlos in 98% der Fälle – mehr ist nicht besser Wenn es zu sehr “blubbert”, reduzieren Sie den Sog an der Sogquelle, bis das “Blubbern” ganz aufhört und erhöhen Sie ihn dann wieder langsam, bis es “blubbert”

Einweg-Thoraxdrainagen Sammelkammer Flüssigkeiten sammeln sich hier, kalibriert in mL, beschreibbare Oberfläche für Zeit und Visum Wasserschloss 1-Weg-Ventil, U-Rohr-Design, kann Luftlecks und Veränderungen des intrathorakalen Druckes anzeigen Sogkontrollkammer U-Rohr, kleiner Arm ist das atmosphärische Ventil, langer Arm ist Wasserreservoir, System ist reguliert, leicht kontrollierbarer Unterdruck

Zur Verfügung gestellt von: Atrium University Informationen: AtriumU.com