Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung

Slides:



Advertisements
Ähnliche Präsentationen
Algorithmen und Datenstrukturen (EI)
Advertisements

Christian Schindelhauer
Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUT Universität Paderborn Algorithmen und Komplexität Notationen A = ist eine endliche, nichtleere menge,
Grammatiken, Definitionen
Christian Schindelhauer
1 HEINZ NIXDORF INSTITUT Universität Paderborn Algorithmen und Komplexität Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester.
1 HEINZ NIXDORF INSTITUT Universität Paderborn Algorithmen und Komplexität Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester.
Christian Schindelhauer
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (02 – Endliche Automaten) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (05 – Reguläre Ausdrücke) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (06 – Reduktion endlicher Automaten) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (12 – Kellerautomaten, PDA) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (04 – Automaten mit ε-Transitionen) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (03 – Nichtdeterminierte endliche Automaten) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (17 –Turingmaschinen) Prof. Dr. Th. Ottmann.
Grundkurs Theoretische Informatik, Folie 3.1 © 2004 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 3 Gottfried Vossen Kurt-Ulrich Witt.
Reguläre Sprachen Karin Haenelt.
© Karin Haenelt 2006, Äquivalenzen Reg.Ausdrücke, Reg.Sprachen, EA ( ) 1 Reguläre Sprachen Karin Haenelt.
© Karin Haenelt 2006, Operationen auf Akzeptoren und Transduktoren, ( ) 1 Operationen auf endlichen Akzeptoren und Transduktoren.
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/ Vorlesung Dominic Dumrauf.
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Christian Schindelhauer
Theoretische Informatik 2
Semantik von UML Sequenzdiagrammen
Formale Sprachen Grundbegriffe für formale Sprachen
Grenzen der Regularität
Christian Schindelhauer Wintersemester 2006/07 8. Vorlesung
Formale Sprachen Reguläre Sprachen Rudolf FREUND, Marian KOGLER.
Automaten, formale Sprachen und Berechenbarkeit II SoSe 2004 Prof. W. Brauer Teil 1: Wiederholung (Vor allem Folien von Priv.-Doz. Dr. Kindler vom WS 2001/02.
Beispiele: KFG 2.Teil Beispiel 1: Sei G eine Grammatik mit den folgenden Regeln: S  Ac | Bd A  aAb | ab B  aBbb | abb Definieren Sie.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Systeme II - Probeklausur - Arne Vater Sommersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Christian Schindelhauer Wintersemester 2006/07 1. Vorlesung
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Arne Vater Wintersemester 2006/07 28.
Informatik III Christian Schindelhauer Wintersemester 2006/07
Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester.
Peer-to-Peer-Netzwerke
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Informatik III Christian Schindelhauer Wintersemester 2006/07
Arne Vater Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07
Informatik III Christian Schindelhauer Wintersemester 2006/07
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Arne Vater Wintersemester 2006/ Vorlesung
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung
Christian Schindelhauer Wintersemester 2006/07 2. Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Christian Schindelhauer Wintersemester.
1 Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Arne Vater Wintersemester 2006/07 26.
Arne Vater Wintersemester 2006/ Vorlesung
Wintersemester 2005 / Vorlesung
Institut für Softwarewissenschaft – Universität WienP.Brezany 1 Beispiele (Frist: ) Beispiel 1: Sei  = {a, b} ein Alphabet und Q = {q 0, q 1 } eine.
Inhalt Einordnung und Funktion der lexikalische Analyse Grundlagen
Gliederung 0. Motivation und Einordnung 1. Endliche Automaten
 Präsentation transkript:

Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung 02.11.2006 Informatik III Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung 02.11.2006

Kapitel III Reguläre Sprachen Reguläre Sprachen und Ausdrücke

Akzeptierende Berechnung eines NFA

L(NFA)  L(DFA) Theorem Jeder nichtdeterministischer endliche Automat hat einen äquivalenten determinstischen Automat. Beweis: Gegeben sei ein nichtdeterministischer endlicher Automat N = (Q, , , q0, F) dann konstruieren wir den DFA M = (Q’, , ’, q0’, F’ ) wie folgt: 1. Fall: kein -Übergang in  Zustandsmenge: Q’ = P(Q), Q’ ist die Potenzmenge von Q Alphabet bleibt gleich Übergangsfunktion Für alle r  Q1 und a   gelte andere Notation: Anfangszustand: q0 = {q0} Akzeptierende Zustände: Zustand R akzeptiert, falls ein akzeptierender Zustand von F in R ist

Potenzmenge Zustandsmenge: Q’ = P(Q), Q’ ist die Potenzmenge von Q

Ohne -Übergang .. Übergangsfunktion Für alle r  Q1 und a   gelte andere Notation: Anfangszustand: q0 = {q0} Akzeptierende Zustände: Zustand R akzeptiert, falls ein akzeptierender Zustand von F in R ist

L(NFA)  L(DFA) Gegeben sei ein nichtdeterministischer endlicher Automat N = (Q, , , q0, F) dann konstruieren wir den DFA M = (Q’, , ’, q0’, F’ ) wie folgt: 2. Fall: Mit -Übergang in  Notation: Zustandsmenge: Q’ = P(Q), Q’ ist die Potenzmenge von Q Alphabet bleibt gleich Übergangsfunktion Für alle r  Q1 und a   gelte andere Notation: Anfangszustand: q0 = E({q0}) Akzeptierende Zustände: Zustand R akzeptiert, falls ein akzeptierender Zustand von F in R ist

Beispiel NFADFA .. Übergangsfunktion Für alle r  Q1 und a   gelte andere Notation: Anfangszustand: q0 = E({q0}) Akzeptierende Zustände: Zustand R akzeptiert, falls ein akzeptierender Zustand von F in R ist

Ein alternativer Beweis für den Abschluß über der Vereinigung Beweisskizze: Betrachte NFAs N1 und N2 Konstruiere N mit neuem Startzustand und -Übergangen zu den Startzuständen von N1 und N2 NFA N akzeptiert L(N1)  L(N2 )

Abschluss unter Vereinigung Alternativer Beweis Gegeben seien nichtdeterministische endliche Automaten N1 = (Q1, , 1, q1, F1) und N2 = (Q2, , 2, q2, F2) Konstruktion von N = (Q, , , q0, F) mit L(N)= L(N1)  L(N2 ) Zustandsmenge: Q = {q0}  Q1  Q2 Anfangszustand: q0 Akzeptierende Zustände: F = F1  F2 Übergangsfunktion

Die regulären Sprachen sind gegenüber der Konkatenation abgeschlossen Beweisskizze: Betrachte NFA N1 und N2 Konstruiere NFA N mit -Übergangen von allen akzeptierenden Zuständen von NFA N1 zu dem Startzustand von NFA N2 Neuer Startzustand von N ist Startzustand von N1 Die neuen akzeptierenden Zustände sind die von N2 NFA N akzeptiert L(N1)L(N2 )

Abschluss unter Konkatenation Theorem Die Menge der regulären Sprachen ist abgeschlossen unter Konkatenation Beweis: Gegeben seien nichtdeterministische endliche Automaten N1 = (Q1, , 1, q1, F1) und N2 = (Q2, , 2, q2, F2) Konstruktion von N mit L(N)= L(N1) L(N2 ) Zustandsmenge: Q’ = Q1  Q2 Anfangszustand: q0 = q1 Akzeptierende Zustände: F = F2 Übergangsfunktion

Die regulären Sprachen sind unter dem Stern-Operator abgeschlossen Beweisskizze: Betrachte NFA N1 Konstruiere NFA N mit neuem Startzustand -Übergang vom neuem Startzustand zum alten -Übergangen von allen akzeptierenden Zuständen zum Exstartzustand Rest bleibt gleich in N L(N) = L(N1)*

Abschluss unter der Stern-Operation Theorem Die Menge der regulären Sprachen ist abgeschlossen unter der Stern-Operation Beweis: Gegeben sei der nichtdeterministische endliche Automat N1 = (Q1, , 1, q1, F1) und Konstruktion von N mit L(N)= L(N1)* Zustandsmenge: Q’ = {q0}  Q1 Anfangszustand: q0 Akzeptierende Zustände: F = {q0}  F1 Übergangsfunktion

Reguläre Ausdrücke Definition R ist ein regulärer Ausdruck, wenn R eines der Darstellungen besitzt a, für ein Zeichen a    Ø (R1  R2), wenn R1 und R2 schon reguläre Ausdrücke sind (R1  R2), wenn R1 und R2 reguläre Ausdrücke sind (R1)*, wenn R1 ein regulärer Ausdruck ist Notation statt R1  R2 schreiben wir R1 R2 Bindung: zuerst Stern, dann Konkatenation, dann Vereinigung Also: abi*a*c*k = (ab)((i*)a*)c*k) Schöner: = ab  i*a*  c*k

Beispiele Zum Warmwerden: Was ist das? flick  flack = fl (i  a) ck fidera(la)*la 0*10* (0123456789)*(05) Kniffliger: otto  Ø otto   otto  Ø Praktisch unlösbar (oder?)   Ø   Ø * Ø* Der Knüller Ø  (Ø  (Ø  Ø ))*

Reguläre Operationen Definition Die regulären Operationen Vereinigung, Konkatenation und Stern werden wie folgt definiert Vereinigung: Konkatenation Stern

Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (1 Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (1. Teil: ) Lemma Jeder reguläre Ausdruck R beschreibt eine reguläre Sprache Beweis Wir konvertieren R in einen NFA 1. Fall R = a, für a   Automat: Formal: 2. Fall R =  Automat: Formal: 3. Fall R = Ø Automat: 4. Fall: R = (R1  R2), 5. Fall: (R1  R2), 6. Fall: (R1)* siehe Folien 03-3 bis 03-08

Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (2 Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (2. Teil: ) Strategie: Einführung der verallgemeinerten nichtdeterministischen endlichen Automaten (Generalized Non-deterministic Finite Automata - GNFA) NFA  GNFA GNFA  Regulärer Ausdruck Eigenschaften GNFA: GNFA = NFA + reguläre Ausdrücke Reguläre Ausdrücke auf den Übergängen Ein akzeptierender Zustand Alle Übergänge existieren Ausnahmen: Kein Übergang hin zum Startzustand Kein Übergang ausgehend vom akzeptierenden Zustand

Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (2 Die regulären Ausdrücke beschreiben genau die reguläre Sprachen (2. Teil: ) Strategie: NFA mit k Zuständen  GNFA mit k+2 Zuständen GNFA mit k+2 Zuständen  GNFA mit k+1 Zuständen GNFA mit k+1 Zuständen  GNFA mit k Zuständen ... GNFA mit 3 Zuständen  GNFA mit 2 Zuständen GNFA mit 2 Zuständen  Regulärer Ausdruck a*b(a  b)*

GNFA mit k Zuständen  GNFA mit k-1 Zuständen Wie kann man einen Zustand im GNFA einsparen? Zustand qraus soll raus Betrachte alle anderen Paare qi,qj Jeder Weg von qi nach qj kann entweder nach qraus führen (R1) dort beliebig häufig qraus die Schleife über qraus nehmen (R2)* dann nach qj gehen (R3) oder überhaupt nicht über qraus gehen (R4)

Informatik III Christian Schindelhauer Ende der 3. Vorlesung Informatik III Christian Schindelhauer