Eingebettete Systeme Qualität und Produktivität

Slides:



Advertisements
Ähnliche Präsentationen
Regelungstechnik Grundlagen Demo
Advertisements

Vorlesung Prozessidentifikation
Vorlesung Regelungstechnik 2
Vorlesung Regelungstechnik 2
Vorlesung Prozessidentifikation
Strukturfunktionsgenerierung
Referent: Martin Arens Fachbereich Elektrotechnik Fh-Trier
Modellbasierte Software-Entwicklung eingebetteter Systeme
Modellbasierte Software-Entwicklung eingebetteter Systeme
Eingebettete Systeme Qualität und Produktivität
Prof. Dr. Holger Schlingloff
Software-Engineering II Eingebettete Systeme, Softwarequalität, Projektmanagement Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Prof. Dr. Holger Schlingloff
Eingebettete Systeme Qualität und Produktivität
Modellbasierte Software-Entwicklung eingebetteter Systeme
Eingebettete Systeme Qualität und Produktivität
Eingebettete Systeme Qualität und Produktivität
(Harmonische) Schwingungen
Kooperierende autonome Fahrzeuge
Eingebettete Systeme Qualität und Produktivität
Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FIRST.
Modellbasierte Software-Entwicklung eingebetteter Systeme
Software-Engineering II Eingebettete Systeme, Softwarequalität, Projektmanagement Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Prof. Dr. Holger Schlingloff
Prof. Dr. Holger Schlingloff
Prof. Dr. Holger Schlingloff
Prof. Dr. Holger Schlingloff
Prof. Dr. Holger Schlingloff
Management großer Softwareprojekte - Auswertung der Fragebögen - Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin, Institut für Informatik Fraunhofer.
Eingebettete Systeme Qualität und Produktivität
Eingebettete Systeme Qualität und Produktivität Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Eingebettete Systeme Qualität und Produktivität
Spezifikation, Verifikation, Testtheorie Prof. Dr. Holger Schlingloff Institut für Informatik und Fraunhofer FIRST.
Prof. Dr. Holger Schlingloff
Management großer Softwareprojekte Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin, Institut für Informatik Fraunhofer Institut für Rechnerarchitektur.
Management großer Softwareprojekte
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Harmonische Schwingung
Numerik partieller Differentialgleichungen
Anti-windup.
Dr. Hergen Scheck BBS Lüchow 2/2005
Gedämpfte harmonische Schwingungen
Vorlesung Regelungstechnik 1
Vorlesung Regelungstechnik 2
Entwicklung von Simulationsmodellen WS 2007/08 Dr. Falk-Juri Knauft Mittwoch 9.15 Uhr – Uhr S25 Praktikum zur Entwicklung von Simulationsmodellen:
VU , SS 2009 Grundlagen der Regelungstechnik 8
Powertrain Hybrid Systems Electric Drives.
Spezifikation von Anforderungen
Fakultät für Informatik Lehrstuhl IV: Software & Systems Engineering1 Zentralübung Automotive Software Engineering – Übungsblatt 3 Sascha Schwind.
Regelungstechnik: 1. Einführung
Reglerentwurf für den Doppelpropeller
Digitale Regelungstechnik für Dummies
Mechanische Oszillatoren Das Federpendel
Implementierung eines PID-Regler für den eVolo auf ARM-Mikrocontroller
Entwurf superstabiler Regelkreise
(Digitale) Regelungstechnik für Dummies
Harmonische Schwingungen
Modellbasierte Software-Entwicklung eingebetteter Systeme
Modellbasierte Software-Entwicklung eingebetteter Systeme
Modellbasierte Software-Entwicklung eingebetteter Systeme
Kapitel 3.6: Kalorische Zustands-gleichung für die Enthalpie
Kapitel 4: Der 2. Hauptsatz der Thermodynamik
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Eingebettete Systeme Qualität und Produktivität Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
Modellierung: MATLAB – Simulink - Stateflow
Yawcontrol Prof. Sergio Montenegro Lehrstuhl Informatik 8 Yawcontrol Nils Gageik.
 Präsentation transkript:

Eingebettete Systeme Qualität und Produktivität Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik 15.6.2009

War wir bislang hatten Einführungsbeispiel (Mars Polar Lander) Automotive Software Engineering Domänen-Engineering Modellbasierte Entwicklung Anforderungsdefinition und -artefakte Lastenheft TSG Ziele und Szenarien Strategien Modellierung physikalische Modellierung Anwendungs- und Verhaltensmodellierung Berechnungsmodelle, zeitabhängige & hybride Automaten Datenflussmodelle (Katze und Maus) Regelungstechnik 15.6.2009

Pendel Aufstellen physikalischer Schwingungsgleichungen Erstellen eines Simulationsmodells (Strecke/Regelung) Simulation und Validierung des Modells Codegenerierung 15.6.2009

Schwingungsgleichung Pendel  Länge L Masse m Auslenkung s Ansatz: Trägheitskraft = Rückstellkraft m*s= -m*g*sin =s/L  s+g*sin(s/L)=0 Anfangsbedingung (0) bzw. s(0) Linearisierung: für kleine  gilt sin s=(-g/L)* s Analytische Lösung oder Simulation 15.6.2009

inverses Pendel Modellierung der Strecke mit Wagen und Pendel http://www-user.tu-chemnitz.de/~beber/DA/Diplomarbeit_IP.pdf Modellierung der Strecke mit Wagen und Pendel 15.6.2009

inverses Pendel Wagen: F=U-M*x Pendel: 15.6.2009

Pendel @ FIRST Fehlertolerante Realisierung! 15.6.2009

Crashkurs Regelungstechnik Eingebettetes System: System Umgebung Allgemeines Schema eines Regelkreises: © Prof. Dr.-Ing. Ch. Ament 15.6.2009

15.6.2009

15.6.2009

Steuerbarkeit und Beobachtbarkeit lineares DGL-System. Sei x der Vektor der Regelgrößen, u der Vektor der Stellgrößen und y ein Vektor von Messgrößen. Das System x[t+1]=A*x[t]+B*u[t] ist steuerbar mit Schrittweite n, wenn es zu jedem Wertepaar p, q eine Folge u[0],…,u[n-1] gibt mit p=x[0] und q=x[n] intuitiv: das System lässt sich von p nach q steuern Ein System mit x[t+1]=A*x[t]+B*u[t] und y[t+1]=C*x[t]+D*u[t] ist beobachtbar, wenn aus der Steuerfolge u[0],…u[n-1] und der Messwertfolge y[0],…, y[n-1] mit der Schrittzahl N der unbekannte Anfangszustand x[0] bestimmt werden kann intuitiv: der Zustand lässt sich aus dem Verhalten ableiten  Erweiterungen für den kontinuierlichen Fall  Charakterisierung mit algebraischen Mitteln 15.6.2009

Reglerklassen Proportionaler, integraler und differentialer Anteil bei der Regelung P-Regler: u(t)=k*e(t) I-Regler: u(t)=k*e(t) dt D-Regler: u(t) = k*e(t) PI-Regler: u(t) = k1*e(t) + k2*e(t) dt PD-Regler: u(t) = k1*e(t) + k2*e(t) PID-Regler: u(t) = k1*e(t) + k2*e(t) dt + k3*e(t) u(t) = KP*[e(t) + 1/TI*e(t) dt + TD *e(t)] KP: Proportionalbeiwert, TI: Nachstellzeit, TD: Vorhaltezeit Ziel: Vermeidung bzw. Dämpfung von Überschwingungen „Reiner“ Differenzierer nicht realisierbar (Verzögerung!) 15.6.2009

informell PID-Regler: P(proportionaler) Anteil: „Je größer die Regelabweichung, umso größer muß die Stellgröße sein“ I(integraler) Anteil: „Solange eine Regelabweichung vorliegt, muß die Stellgröße verändert werden“ D(differentieller) Anteil: „Je stärker sich die Regelabweichung verändert, umso stärker muß die Regelung eingreifen“ 15.6.2009

PID in Simulink Als fester vorgegebener Block verfügbar! 15.6.2009

Einstellung des Reglers Erst den proportionalen Anteil einstellen erhöhen bis leichte Oszillation auftritt Dann integralen Teil hochregeln solange bis die Oszillation aufhört Dann differentiellen Anteil damit Zielgerade möglichst schnell erreicht wird Parameter Anstiegszeit Überschwingung Einschwingzeit Abweichung P -- + +- - I ++ D 15.6.2009

Beispiel Wasserstandsregelung Hausaufgabe! 15.6.2009