Seminar im Bereich der Kern- und Teilchenphysik

Slides:



Advertisements
Ähnliche Präsentationen
Die Frage nach dem Leben, dem Universum
Advertisements

Experimente mit reellen Photonen
Michael Hammer: Das Standardmodell der Teilchenphysik
Bild 1.
Bild 1.
Wechselwirkung Elektron – Festkörper
Konzept der Wechselwirkungen
“Physik am Samstagmorgen”
Michel-Parameter im µ-Zerfall
Vortrag zum Seminar Kern- und Teilchenphysik Malte Mielke
Kilian Leßmeier Universität Bielefeld
Kap. 1: Einführung Übersicht Hadron-Kollider
Kap. 2: Bestandteile der hadronischen Wechselwirkung
Die Nukleon-Nukleon Wechselwirkung
Frage: was sind die wesentlichen Aussagen der QCD und wie werden sie getestet? Antworten: a) die starke Wechselwirkung wird durch den Austausch von Gluonen.
Teilchenphysik: Verständnisfragen
Teilchenphysik: Verständnisfragen
Quark- und Gluonstruktur von Hadronen
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 2. Juni 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 21. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 7. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 16. Mai 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 25. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 18. April 2006
Entdeckung des Myons und des Pions in der kosmischen Strahlung
Der Formfaktor.
Das Quark-Gluon-Plasma
Achim Stahl 18-April-2006 Seminar Neutrinos. Konsistente Beschreibung der Welt der Elementarteilchen experimentell vielfach überprüft muß für massive.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 18. April 2006 Robert Klanner Universität Hamburg, IExpPh Sommersemester 2006.
Streuung von Elektronen bei hohen Energien
Kern- und Teilchenphysik
Perspektiven Elektromagnetische Sonden
Seminarvortrag von Florian Senger
- Die Elementarteilchen
Beispiel für kollektive Effekte: Raumladung
Programm – 09.50: Begrüßung und Umfrage – 11.30: Vorträge
AUFBAU DER ATOME.
Zusammenfassung: Stoffe: Gewerblich Industrielles Bildungszentrum Zug
Der Urknall und seine Teilchen
Wellen zeigen Teilchen Eigenschaft
Bohrs Atommodell und Strahlung bei elektronischen Übergängen
Atome und Periodensystem.
1. Physik der Elementarteilchen.
i) Projektil in Ladungsverteilung des Kerns eindringt
Experimente mit reellen Photonen
Die wichtigsten stabilen Teilchen
Chemische Bindungen.
Radioaktive Strahlung
Teil 7: Offene Fragen der Teilchenphysik
WYP 2005 European Masterclass Das Standardmodell Standardmodell der Elementarteilchenphysik.
Bild 1.
Wechselwirkungen von Strahlung mit Materie
Elektrisches Radialfeld
Lernplan für den Die Coulombkraft und das Potenzial in der Umgebung
Schwere Eichbosonen Seminarvortrag im Rahmen des F-Praktikums
Kapitel 3: Erhaltungssätze
Kern- und Teilchenphysik WS09/10 Christof Aegerter
Standardmodell. 224 Was wissen wir bisher? Nukleonen bestehen aus (3) spin ½ Teilchen mit relativ geringer Masse.
Was noch fehlt Konzepte jenseits der Quantenmechanik
Fachdidaktische Übungen Stefan Heusler.
Elektrizitätslehre Reibungselektrizität Das Thema Reibungselektrizität
Der Atomkern und das Periodensystem. Atom Kleinstes auf chemische Weise nicht weiter teilbares Teilchen Besteht aus dem Atomkern und der Atomhülle Im.
Elena Ginina 04. März 2016 Teilchensuche in echten Daten des CMS Detektors.
ATLAS-Masterclasses Einführung in die W-Pfad Messung
Neutrino-Oszillation !
Erste Experimente zur Untersuchung der inneren Struktur der Materie
Atome im Magnetfeld Magnetisches Moment
Standardmodell der Elementarteilchenphysik
QCD Johannes Haase.
Erste Experimente zur Untersuchung der inneren Struktur der Materie
 Präsentation transkript:

Seminar im Bereich der Kern- und Teilchenphysik Struktur des Nukleons Seminar im Bereich der Kern- und Teilchenphysik Matthias Böcker

Übersicht Streuprozesse und Wirkungsquerschnitte Formfaktoren Elastische Elektron-Nukleon-Streuung Tiefinelastische Streuung, Strukturfunktionen Das Partonmodell Das Quarkmodell Gluonen Zusammenfassung

Wirkungsquerschnitt Anschauliche Deutung: Jedem Streuzentrum wird eine Fläche zugeordnet. Trifft ein einlaufendes Teilchen diese Fläche, so findet eine Streuung statt Differentieller Wirkungsquerschnitt: In der Praxis wird nicht die Gesamtzahl aller Reaktionen registriert, sondern nur ein geringer Teil der durch den Rumwinkel DW=A/r² begrenzt wird.

Rutherford-Streuung Rutherfordsche Streuformel für Streuung eines Elektrons an einem Atomkern: Nachteil: In dieser Formel wird jedoch weder der Spin mit einbezogen noch wird die Reaktionskinematik relativistisch behandelt. Vorteil: Rückstoß des Atomkerns ist für kleine Elektronen-energien zu vernachlässigen

Mott-Wirkungsquerschnitt: Beschreibung des WQ unter Berücksichtigung des Elektronenspins Experimentell: Bei größerem Impulsübertrag |q| ist der experimentelle WQ der Elektron-Nukleon-Streuung systematisch kleiner als beim theoretischen Mott-WQ Grund: Bei größerem |q| wird der reduzierte Wellenlänge des virtuellen Photons kleiner

Herleitung über Fermis ‚Goldene Regel‘ Bei genügend großen Energien ‚sieht‘ das gestreute Elektron nicht mehr die gesamte Ladung des Kerns, sondern nur noch Teile davon. Der Wirkungsquerschnitt nimmt ab. Beschreibung möglich durch den Formfaktor: Herleitung über Fermis ‚Goldene Regel‘ Experimentelle Bestimmung über Fit an den Messdaten

Zusammenhang zwischen radialer Ladungsverteilung und Formfaktor

Beispiele der Messung von Formfaktoren: Messung des Formfaktors von 12C durch Elektronenstreuung. Gestrichelte Kurve entspricht der Bornschen Näherung bei einer Welle, die an einer homogenen Kugel mit diffusem Rand gestreut wird. Differentielle WQ an den Kalziumisotopen 40Ca und 48Ca. Zur besseren Darstellung wurden WQ mit einen Faktor 10 bzw. 10-1 multipliziert. Aus der Lage der Minima erkennt man, dass der Radius von 48Ca größer ist als von 40Ca.

=>Die Ladungsverteilung in Kernen ist homogen, nimmt aber zum Rand hin exponentiell ab.

Elastische Elektron-Nukleon-Streuung Größe des Nukleons bestimmt die Energie des eingestrahlten Elektronenstrahls Experimentell: einige hundert MeV bis zu einigen GeV Masse des Nukleons: ca. 938MeV => Rückstoß des Targets kann nicht mehr unberücksichtigt bleiben => Benutzung des Viererimpulsübertrags: Um nur mit positiven Größen zu arbeiten, definiert man:

Weiteres Problem: Das Nukleon ist ein Spin-1/2-Teilchen =>Nukleon hat ein magnetisches Moment: =>Zusätzliche WW zwischen Teilchenstrom und magnetischem Moment des Nukleons. =>Neben einem elektrischen Formfaktor braucht man noch einen magnetischen Formfaktor . Der WQ einer elastischen Streuung lässt sich schließlich durch die ‚Rosenbluth-Formel‘ beschreiben:

Bestimmung von und Für feste Werte von Q2 werden verschiedene Streuwinkel und damit Strahlenergie gemessen. Bestimmung von über die Steigung Bestimmung von danach über den Achsenabschnitt bei q = 0

Für den Grenzfall Q2g0 ergeben sich folgende Werte: aDipolfit

Berechnung der mittleren quadratischen Radien der Ladungs-verteilungen aus Dipolfit möglich: Heutige Ergebnisse der Ladungsradien ergeben für das Proton einen Wert von und für das Neutron einen Wert von =>Auch im Neutron müssen sich elektrische geladene Konstituenten befinden

Tiefinelastische Streuung Durch Erhöhung der Energie des einfallenden Elektrons wird die Wellenlänge des virtuellen Photons kleiner und die Auflösung nimmt zu: Man könnte eine Unterstruktur des Nukleons erkennen

D-Resonanz Nukleonenresonanzen beim Proton lassen darauf schließen, dass das Proton ein System aus zusammengesetzten Konstituenten ist.

Feynman-Diagramm der Proton-D-Resonanz-Anregung Bei invarienten Massen W>2,5GeV sieht man keine Anregungsspektren mehr, sondern neue stark wechselwirkende Teilchen (Hadronen)

Neues Problem: Bei der inelastischen Streuung kommt neben der Einschuss-energie noch die Anregungsenergie des Protons als freier Parameter hinzu. Elastische Streuung: Inelastische Streuung: Einführung der Strukturfunktionen W1 und W2 Ersetzung der Rosenbluth-Formel

Mit wachsendem Q2 nehmen die Wirkungs-querschnitte der Nukleonenresonanzen sehr rasch ab Für invariante Massen W>2GeV sieht man kaum noch eine Abhängigkeit von Q²

Im Bereich der tiefinelastischen Streuung hängt die Struktur-funktionen kaum von Q² ab.

Bjorkensche Skalenvariable: Elastische Streuung: Inelastische Streuung: => Bjorkensche Skalenvariable ist eine dimensionslose Größe, die ein Maß für die Inelastizität eines Prozesses ist.

=>Strukturfunktion ist unabhängig von Q² Anstelle der dimensionsbehafteten Strukturfunktionen W1 und W2 werden dimensionslose Strukturfunktionen verwendet: =>Strukturfunktion ist unabhängig von Q² Großer Bereich =>Das Nukleon besitzt eine Unterstruktur aus punktförmigen Konstituenten!

Die Callan-Gross-Beziehung wird erfüllt. Die Strukturfunktion F1 rührt von der magnetischen Wechsel-wirkung her. Für ein Spin-0-Teilchen wäre F1(x)=0 . Für ein Spin-1/2-Teilchen ergibt sich die so genannte ‚Callan-Gross-Beziehung‘: Die Callan-Gross-Beziehung wird erfüllt. => Die punktförmigen Konstituenten des Nukleons haben den Spin 1/2!

Das Partonmodell: Nachteil: In einem sehr schnell bewegtem System sind die trans-versalen Impulse der Konstituenten vernachlässigbar =>Die Elektronen wechselwirken an den Konstituenten wie bei der elastischen Streuung, wenn die einzelnen Konsti-tuenten nicht untereinander wechselwirken. Die inelastische Elektron-Nukleon-Streuung läßt sich auf eine elastische Elektron-Parton-Streuung zurückführen. Nachteil: Bezugssystem ist schlecht zu handhaben

Deutung der ‚Bjorkenschen Skalenvariablen‘ x im Partonmodell: Die Bjorkensche Skalenvariable entspricht dem Bruchteil des Viererimpulses des Protons, der von einem Parton getragen wird. Gilt jedoch nur in sehr schnell bewegten Systemen!

Lösung: ‚Breit-System‘ Vorteil: Das Photon überträgt keine Energie Im Breitsystem vereinfacht sich auch die Formel der Wellenlänge für das Ortsauflösende virtuelle Photon zu: => Q² ist ein Maß der räumlichen Auflösung

Quarkmodell: Versuch eine Systematik in das System zu bekommen! Nukleon muss mindestens aus drei Quarks bestehen, da jedes Quark Spin-1/2-Teilchen sind und die Nukleonen ebenfalls Spin-1/2-Teilchen sind. Mindestens zwei Teilchen , u (up) und d (down) mit der Ladung +2/3, bzw. -1/3, da Teilchen mit doppelt positiver Ladung gefunden wurden (D++guuu), aber nur Teilchen mit einfach negativer Ladung (D-gddd)

Experimentell wurden neben den drei so genannten Valenzquarks noch andere Teilchen nachgewiesen =>Es existiert noch ein ‚See‘ aus anderen Teilchen, die aber nicht an der Quantenzahl des Nukleons beteiligt sind =>Es existieren noch Quark-Antiquark-Paare im Nukleon, die als ‚Seequarks‘ bezeichnet werden Heute sind insgesamt 6 verschiedene Quarks bekannt: Die Quarks c, t, b sind so schwer, dass sie bei den erreichbaren Werten für Q² nur eine untergeordnete Rolle spielen und deshalb auch im folgenden nicht weiter beachtet werden.

Strukturfunktion im Parton-Quark-Modell Annahme: Das Nukleon besteht aus f verschiedenen Quarktypen, die jeweils die Ladung zf .e trägt. g WQ ist proportional zum Quadrat der Ladung, also zf², bei elektromagnetischer Streuung. Für ein Quark-Antiquark-System erhält man deshalb:

Formal gehen Proton und Neutron durch Vertauschen von u- und d-Quark ineinander über (Isospinsymmetrie) Für ein gemitteltes Nukleon erhält man deshalb: Zweiter Summand nur klein, da s-Quarks nur als Seequarks vorkommen =>5/18 ist mittlere quadratische Ladung der u- und d-Quarks

Bei der tiefinelastischen Neutrinostreuung entfallen die Fak-toren zf², da hier nur die schwache WW wirkt und bei allen Quarks gleich ist. Für die Strukturfunktion erhält man für die Neutrino-Nukleonstreuung: Experimentell: Bis auf den Faktor 5/18 sind die Strukturfunktionen und identisch. => Die Ladungszahlen +2/3 für das u-Quark und -1/3 für das d-Quark sind richtig zugeordnet!

Bei Integration über alle mit Verteilungsfunktionen gewichteten Quarkimpulsen sollte gelten: Experimentell erhält man: =>Die Hälfte des Impulses wird nicht von den Quarks, sondern von Teilchen, die weder elektromagnetisch noch schwach wechselwirken getragen. =>Gluonen

Wie bekommt man eine unterschiedliche Auflösung zwischen Valenz- und Seequarks hin? Durch lange WW ist bei kleinen Q² nur die Valenzquarks sichtbar wo hingegen bei großen Q² Seequarks sichtbar werden.

Schematische Darstellung der Strukturfunktion 1/3 Schematische Darstellung der Strukturfunktion Strukturfunktion bei inelastischer Streuung

Interpretation der Partonenimpulsverteilung: Bei einem Quark bestünde die Strukturfunktion aus einen Strich bei 1 Bei drei unabhängigen Quarks sollte sich die die Verteilung zu 1/3 hin verschieben, da sich der Impuls gleichmäßig verteilt.

Gluonen würden eine andere Impulsverteilung hervorrufen und das Maximum würde sich etwas verringern. Die Gluonen selber übernehmen etwa die Hälfte des Impulses =>Experimenteller Beweis der Existenz von einer ‚Suppe‘ aus Quarks, Anti-Quarks und Gluonen

Neues Problem: Spin der einzelnen Quarks beträgt 1/2 und ist gleich dem Spin des Nukleons. Experimentell: D++ existiert und besteht aus drei u-Quarks =>Verletzung des Pauli-Prinzips Lösung: Farbe Daher Teilchen unterscheidbar und nach außen hin sind alle Teilchen ‚weiß‘.

Gluonen dienen als Austauschteilchen der Farbe und bestehen aus Farbe und Antifarbe und sind Träger der starken WW. Gluonen können in Analogie zum Positronium ein System aus Teilchen und Antiteilchen erzeugen =>Seequarks entstehen durch Austausch von Gluonen

Innere eines Nukleons

Nachweiß von Gluonen: Bei einer e--e+-Kollision können Hadronenjets entstehen, die aus Quark, bzw. Antiquark entstehen. Es kann aber auch sein, dass neben den beiden Quark zusätzlich ein Gluon entsteht (Analogie zur Bremsstrahlung).

Zusammenfassung: Die Ladungsverteilung bei Kernen entspricht einer homogenen Verteilung mit diffusem Rand. Die Ladungsverteilung im Proton lässt sich durch eine e-Funktion beschreiben Ein Nukleon ist aus drei punktförmigen Valenzquarks aufgebaut, die jeweils den Spin ½ tragen. Die Valenzquarks tragen nur etwa 50% des Impulses des Nukleons. Die anderen 50% werden von den Gluonen, den Austauschteilchen der starken WW getragen. Quarks tragen eine Farbe, Nukleonen sind aber nach außen immer ‚weiß‘ Neben den Valenzquarks existieren noch Seequarks, die als virtuelle Quark-Antiquarkpaare aus den Gluonen hervorgehen.