Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS 05 13.5.

Ähnliche Präsentationen


Präsentation zum Thema: "Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS 05 13.5."—  Präsentation transkript:

1 Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS

2 Organisatorisches Vorlesung: Mi , Fr c.t. Übung: Mo SR 11(ab 18.4.) Schein: Fachgespräch Zuordnung T2,T3 Voraussetzung: Vordiplom (Informatik, Mathematik oder Physik) Website:

3 Themen der Vorlesung Algorithmen mit sublinearer Laufzeit Unter welchen Umständen ist es möglich, etwas zu berechnen, ohne genug Zeit zu haben, die gesamte Eingabe zu lesen? Nicht: Parallele Algorithmen Untere Schranken für die Anzahl der Lesezugriffe auf die Eingabe Was sind Lesezugriffe? Untere Schranken Laufzeit, Time-Space Tradeoffs Verschiedenen Berechnungsmodi Deterministisch Randomisiert Nichtdeterministisch Quantenmechanisch

4 Entscheidungsbäume Einfachstes Berechnungmodell (?) Definition 1.1: Eingabe: x 1,...,x n : n Bits Funktion f: {0,1} n ! {0,1} zu berechnen Baum, Knoten fragen Variablen ab, Kante verzweigen entsprechend, Blätter mit Funktionswert markiert

5 Entscheidungsbäume Beispiel: f(x,y,z)=x Ç(y©z)

6 Komplexität einer Funktion Definition 1.2.: Tiefe eines Baums: entspricht Anzahl der Lesezugriffe auf die Eingabe, maximiert über alle Eingaben D(T): Tiefe des Baums T (Deterministische Tiefe) D(f)=min{D(T): T berechnet f} minimale Anzahl der Lesezugriffe auf die Eingabe( im worst case) eines Baums für f

7 Ein Problem, das schnell gelöst werden kann Gegeben sei ein Tournament: n Spieler/Mannschaften, jeder gegen jeden Matrix: M[i,j]=1 wenn i gewonnen hat kein Unentschieden Gibt es eine Mannschaft, die gegen alle anderen gewonnen hat? n 2 - n Eingaben abfragbar ! Bzw. Eingaben

8 Ein Problem, das schnell gelöst werden kann Eingaben abfragbar ! Entscheidbar mit O(n) Fragen/in Zeit O(n) Algorithmus: Frage [1,2] Verlierer kann nicht gegen alle anderen gewonnen haben, entferne Spalte und Zeile des Verlierers Iteration Pro Runde eine Frage, ein Spieler entfernt Nach n-1 Runden noch 1 Spieler übrig Teste, ob dieser alle Spiele gewonnen hat Insgesamt 2n-3 Fragen

9 Ein Problem, das schnell gelöst werden kann Algorithmus: Frage [1,2] Verlierer kann nicht gegen alle anderen gewonnen haben, entferne Spalte und Zeile des Verlierers Iteration Pro Runde eine Frage, ein Spieler entfernt Nach n Runden noch 1 Spieler übrig Teste, ob dieser alle Spiele gewonnen hat Insgesamt 2n-3 Fragen Zeit: Speichere alle nicht entfernten Spieler in Liste, teste erste zwei in Liste, also Zeit O(n)

10 Struktur des Problems Nicht alle Matrizen sind als Eingaben erlaubt, nur Tournament Matrizen (M[i,j]=M[j,i]=1 nicht erlaubt) Algo funktioniert auch auf beliebigen gerichteten azyklischen Graphen Nur spezielle Eingaben erlaubt, was ist mit Problem, wenn alle Matrizen/Graphen erlaubt sind? Gibt es eine Zeile ? Dann sind mind. (n 2 ) Fragen notwendig

11 Noch ein Problem Gegeben seien n Punkte in einem metrischen Raum, mit Distanzen in einer Matrix D[i,j] Gesucht: maximale Distanz max i,j D[i,j] Algorithmus: wähle beliebiges 1· i· n Berechne E=max j D[i,j] Klar: nur n Fragen Auch klar: E· max i,j D[i,j] Ist E auch eine gute Abschätzung? Seien a,b so dass D[a,b] maximal Dann ist D[a,b]· D[a,i]+D[i,b]· 2E Algorithmus ist approximativ

12 Sublineare Algorithmen Es gibt Probleme, die in sublinearer Zeit lösbar sind Oft sind Anforderungen an die Eingabe im Spiel Algorithmen sind typischerweise randomisiert, oft liefern sie nur ein approximatives Ergebnis

13 Untere Schranken Sortierproblem Algorithmen: Laufzeit O(n log n), wie Quicksort (randomisiert), Heapsort etc. Vergleichsbasierte Algorithmen brauchen Zeit (n log n) Beweis: basiert auf Entscheidungsbäumen

14 Untere Schranke für Sortieren Eingabe: x 1,...,x n, Zugriff nur durch Vergleiche Eingabe: Matrix, M[i,j]=1 wenn x i ·x j n 2 Eingaben! Behauptung: (n log n) Fragen notwendig Beweis: Angenommen {x 1,...,x n }={1,...,n} Blätter des Baumes sind mit Permutationen markiert ( : x (i) ist sortiert) Jede Permutation ist möglich, taucht daher an einem der Blätter auf Es gibt n! Permutationen Tiefe¸ log 2 Anzahl Blätter¸ log 2 n!= (n log n)

15 Entscheidungsprobleme Sortieren hat viele Ausgaben, daher viele verschiedene Blätter im Entscheidungsbaum, also viele Fragen Einfach zu verstehen! Was ist mit Funktionen {0,1} n ! {0,1}? Beispiele: Oder(x 1,...,x n )=1 wenn es x i =1 gibt Und(x 1,...,x n )=1, wenn alle x i =1 Mehrheit(x 1,...,x n )=1 wenn n/2 mal x i =1 Parität(x 1,...,x n )= x i mod 2 Index(x 1,...,x n,y 1,...,y log n )=x y

16 Untere Schranken D(f) Zum Beispiel Oder(x 1,...,x n ) Adversary Argument: Algorithmus berechne Oder Es seien t Fragen gestellt Nächste Frage wird mit x i =0 beantwortet Gegner konstrolliert Eingabe Nach n-1 Fragen immer noch unklar, ob Oder=1 ! Daher n Fragen notwendig Analog: Und, Parität Argument f. Majorität nicht viel schwieriger Alle brauchen n Fragen

17 Gibt es einfache Funktionen? Index(x 1,...,x n,y 1,...,y log n )=x y Frage ys, Frage x y, also log n+1 Fragen Theorem 1.1: Eine Funktion, die von allen Eingaben abhängt, braucht D(f)¸ log n Beweis: Wenn f von allen Variablen abhängt, taucht jedes x i an einem Knoten des Baumes auf Daher gibt es mindestens n innere Knoten, was nur bei Tiefe log n möglich ist.

18 Frage: Sind randomisierte (vergleichbasierte) Algorithmen zum Sortieren schneller? Anwort: Nein, Beweis später

19 Randomisierte Entscheidungsbäume Definition 1.3.: Ein randomisierter Entscheidungsbaum hat zusätzliche Knoten, an denen eine Münze geworfen wird Ein randomisierter Entscheidungsbaum berechnet eine Funktion korrekt, wenn auf jeder Eingabe mit Wahrscheinlichkeit 2/3 das richtige Ergebnis produziert wird Tiefe ist wie zuvor definiert, wobei Zufallsknoten nicht mitgerechnet werden Komplexitätsmass R(f) ist Minimum der Tiefe, über alle korrekten randomisierten Entscheidungsbäume für f

20 Randomisierte Entscheidungsbäume Beispiel: f(x,y,z)=xÇyÇ z Randomisierter Algorithmus: ziehe Zufallsvariable r aus {1,2,3} x,z, oder y=1: Akz. Sonst verwerfe Tiefe 2 Fehler: 1/3 für alle Eingaben

21 Randomisierte Entscheidungsbäume f(x,y,z)=xÇyÇ z Randomisierter Algorithmus: ziehe Zufallsvariable r aus {1,2,3} x,z, oder y=1: Akz. Sonst verwerfe

22 Fazit Jede Komplexität D(f) zwischen log n und n kann auftreten Im allgemeinen konstante Laufzeit deterministisch nicht zu erreichen

23 Plan der Vorlesung 1. (Partielle) Funktionen mit sehr schnellen Algorithmen ) Property Testing 2. Komplexität von Entscheidungsbäumen 1. Wie kann man systematisch Schranken zeigen? 2. Was hilft Randomisierung (Nichtdeterminismus/Quantenberechnung) ? 3. Quantenalgorithmen 3. Anwendungen: 1. Lernbarkeit 2. Laufzeit von Parallelrechnern 3. Tradeoffs zwischen Zeit und Platz 4....

24 Property Testing Szenario zunächst: Eingabe ist Adjazenzmatrix eines (un)gerichteten Graphen Definition 1.4.: Grapheigenschaft: Boolesche Funktion, die alle Graphen mit ja/nein klassifiziert UND die invariant unter Permutation der Knoten ist Beispiel: Hat mindestens eine Kante ist Grapheigenschaft Hat Kante zwischen 1 und 2 ist keine

25 Grapheigenschaften Hat eine Kante ist welche Funktion? Oder auf Variablen Braucht also viele Fragen Definition 1.5.: Grapheigenschaften mit D(f)= heissen schrecklich. (engl. evasive: ausweichend) Grapheigenschaften heissen monoton, wenn sie bei Einfügung neuer Kanten nicht verlorengehen Beispiel: Hat eine Kante monoton, Hat keine Kante antimonoton

26 Grapheigenschaften Beispiel für nicht schreckliche Grapheigenschaft: Der Einfachheit halber auf gerichteten Graphen. Ähnlich Tournament: Akzeptiere, wenn es einen Knoten mit Ingrad n-1 und Ausgrad 0 gibt, verwerfe sonst Nicht monoton! Anderaa, Karp, Rosenberg-Vermutung: Alle nichttrivialen, monotonen Grapheigenschaften sind schrecklich Immer noch offen, aber (n 2 ) ist bewiesen Randomisiert: (n 4/3 ) bewiesen

27 Property Testing Wie sind trotzdem schnelle Algorithmen möglich? Weitere Anforderungen an die Eingaben Definition 1.6.: Ein Graph heisst -weit von einer Eigenschaft entfernt, wenn mindestens n 2 Kanten entfernt/eingefügt werden müssen, damit man einen Graphen mit der Eigenschaft erhält Property Testing: Alle Graphen mit der Eigenschaft sollen akzeptiert werden Alle Graphen, die weit von der Eigenschaft sind, sollen verworfen werden Alle anderen Graphen: egal

28 Property Testing Property Testing: Alle Graphen mit der Eigenschaft sollen akzeptiert werden Alle Graphen, die weit von der Eigenschaft sind, sollen verworfen werden Alle anderen Graphen: egal Komplexität eines Testers: Anzahl der Fragen/Zeit Im allgemeinen sind Tester randomisiert! Eine Eigenschaft heisst testbar, wenn sie einen Tester besitzt, der obigen Anforderungen genügt, und der in Zeit f(1/ ) läuft (mit Erfolgswahrscheinlichkeit 3/4).

29 Ein Property Tester Beispiel: Eigenschaft: Hat keine Kante Akzeptiere alle Graphen ohne eine Kante Verwerfe alle Graphen mit n 2 Kanten mit hoher Wahrscheinlichkeit Algorithmus: Ziehe 100/ Positionen (i,j) in der Adjazenzmatrix Teste, ob eine Kante vorhanden Ja: verwerfe Nein: Akzeptiere Klar: Keine Kante vorhanden, dann wird akzeptiert Kanten da, dann werden erwartet (100/ )¢ =100 Kanten gefunden Wahrscheinlichkeit, dass dann keine Kante gesehen wird ist durch kleine Konstante beschränkt [tatsächlich: ] Also ist die Eigenschaft testbar


Herunterladen ppt "Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS 05 13.5."

Ähnliche Präsentationen


Google-Anzeigen