Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

17.10.05Hierarchical GD, Benjamin Stähr1 Hierarchical Graph-Drawing Eine Technik für das Zeichnen gerichteter Graphen Referent: Benjamin Stähr Autoren.

Ähnliche Präsentationen


Präsentation zum Thema: "17.10.05Hierarchical GD, Benjamin Stähr1 Hierarchical Graph-Drawing Eine Technik für das Zeichnen gerichteter Graphen Referent: Benjamin Stähr Autoren."—  Präsentation transkript:

1 Hierarchical GD, Benjamin Stähr1 Hierarchical Graph-Drawing Eine Technik für das Zeichnen gerichteter Graphen Referent: Benjamin Stähr Autoren des Quelltextes: Gansner, Koutsofios, North, Vo

2 Hierarchical GD, Benjamin Stähr2 Inhalt 1.Einführung in das Thema Zeichnen von gerichteten Graphen 2.Ein Überblick über die Technik 3.Optimale Schichtzuweisung 4.Knotenreihenfolge in Schichten 5.Knotenkoordinaten 6.Kanten zeichnen 7.Zusammenfassung und Ausblick

3 Hierarchical GD, Benjamin Stähr3 Ästhetische Zeichenkriterien Hierarchische Struktur hervorheben Wenn möglich zeigen alle Kanten in die gleiche allgemeine Richtung Erleichtert es gerichtete Pfade zu finden und hebt Quellen und Senken hervor Q S Q S

4 Hierarchical GD, Benjamin Stähr4 Ästhetische Zeichenkriterien Vermeide optische Anomalien z.B. Kantenüberschneidungen und scharfe Knicke in Kanten sind zu vermeiden

5 Hierarchical GD, Benjamin Stähr5 Ästhetische Zeichenkriterien Zeichne möglichst kurze Kanten Vereinfacht das Finden verwandter Knoten Konform zur Vermeidung optischer Anomalien

6 Hierarchical GD, Benjamin Stähr6 Ästhetische Zeichenkriterien Bevorzuge Symmetrie und Balance spielt nur sekundäre Rolle wird an einigen wenigen Stellen des vorgestellten Algorithmus verwendet

7 Hierarchical GD, Benjamin Stähr7 Ästhetische Zeichenkriterien Es ist unmöglich alle diese Kriterien gleichzeitig zu optimieren Entwurf von schnellen Heuristiken, die in vielen Fällen gute Layouts produzieren

8 Hierarchical GD, Benjamin Stähr8 Problemstellung Eingabe ist ein gerichteter Graph G = (V,E) –Enthält evtl. Kreise und Mehrfachkanten –o.B.d.A. ist G zusammenhängend –Die Attribute des Graphen sind: xsize(v),ysize(v): Größe einer den Knoten v umgebenden Bounding Box v ysize(v) xsize(v)

9 Hierarchical GD, Benjamin Stähr9 Problemstellung nodesep(G): Minimaler horizontaler Abstand zwischen zwei Knotenboxen ranksep(G): Minimaler vertikaler Abstand zwischen zwei Knotenboxen w(e): Kantengewicht der Kante e uv nodesep(G)

10 Hierarchical GD, Benjamin Stähr10 Ein Überblick über den Algorithmus Jedem Knoten v wird ein Rechteck mit den Mittelpunktkoordinaten (x(v),y(v)) zugewiesen Jeder Kante e wird eine Reihe von B-Spline Kontrollpunkten (x 0 (e),y 0 (e)),...,(x n (e),y n (e)) zugewiesen Layout hauptsächlich nach den vier ästhetischen Zeichenkriterien

11 Hierarchical GD, Benjamin Stähr11 Ein Überblick über den Algorithmus Die vier Phasen des Algorithmus sind: 1.Rank: weist jedem Knoten eine Schicht im Graphen zu 2.Ordering: setzt die Reihenfolge der Knoten innerhalb jeder Schicht 3.Position: weist jedem Knoten seine absoluten Koordinaten zu 4.Make Splines: Zeichnet die Kanten des Graphen

12 Hierarchical GD, Benjamin Stähr12 3. Optimale Schichtzuweisung Rank weist jedem Knoten eine ganzzahlige Schicht zu Hier muss evtl. min. Längenbeschränkung beachtet werden

13 Hierarchical GD, Benjamin Stähr13 Den Graph azyklisch machen Für eindeutige Schichtzuweisung muss ein Graph azyklisch sein Azyklisch machen Kreise brechen durch temporäre Umkehrung von Kanten DFS partitioniert den Graphen in Baumkanten und Nicht-Baumkanten Nicht-Baumkanten in Cross-, Forward- und Backkanten Durch umkehren von Backkanten Graph kreisfrei

14 Hierarchical GD, Benjamin Stähr14 Den Graph azyklisch machen Sinnvoll wäre es ein kleines oder minimales Kantenset umzudrehen Feedback Arc Set jedoch leider NP-vollst. Lösung: DFS-Heuristik, welche Kanten umdreht, die in vielen Kreisen enthalten sind

15 Hierarchical GD, Benjamin Stähr15 Baumkante Backkante Crosskante Forwardkante

16 Hierarchical GD, Benjamin Stähr16 Problem Definition Nach Ästhetischen Zeichenkriterien ist ein Ziel des Algos kurze Kanten zu zeichnen Gewünscht also optimale Schichtzuweisung z.B. mit min. Gesamtkantenlänge ILP: u.d.N.: Gewichtsfkt.

17 Hierarchical GD, Benjamin Stähr17 Netzwerk Simplex Worstcase-Laufzeit nicht polynomiell, aber in der Praxis sehr schnell Definitionen: –Feasible: Schichtzuweisung erfüllt die min. Längenbedingungen –Slack: Differenz der aktuellen und minimalen Länge einer Kante –Tight: Kante deren Slack = 0 ist

18 Hierarchical GD, Benjamin Stähr18 Netzwerk Simplex Erzeugung einer Schichtzuweisung durch einen Spannbaum des Graphen : –Wähle Startknoten, weise ihm eine Schicht zu –Nachbarknoten erhält den Wert eines bewerteten Knoten +/- der min. Länge der sie verbindenden Kante, je nach Kantenrichtung –Fortfahren bis alle Knoten eine Schichtzuweisung haben

19 Hierarchical GD, Benjamin Stähr19 Netzwerk Simplex Ein Spannbaum ist feasible, wenn seine Schichtzuweisung feasible ist Alle Kanten im eben erzeugten Spannbaum sind tight Der Wert eines Schnittes (bekannt aus EA) durch den Graphen ist s = s = 6

20 Hierarchical GD, Benjamin Stähr20 Netzwerk Simplex Für jede Spannbaumkante wird der Wert eines Schnittes ermittelt. Dabei wird die Kante eleminiert und der Spannbaum bricht dadurch in Quellen- und Senkenkomponente

21 Hierarchical GD, Benjamin Stähr21 Netzwerk Simplex Normalerweise impliziert ein negativer Wert eines Schnittes, dass die gewichtete Kantenlänge - durch Verlängerung der Baumkante bis eine der anderen Kanten tight wird - reduziert werden kann Diese wird neue Baumkante Dadurch neuer feasible Spannbaum

22 Hierarchical GD, Benjamin Stähr22 Netzwerk Simplex Baumkanten mit negativen Schnittwerten werden durch Nicht-Baumkanten ersetzt, bis die Baumkanten pos. Schnittwerte haben Theoretisch wird eine Anti-Zyklen-Technik benötigt, um endl. Laufzeit zu garantieren Der resultierende Spannbaum entspricht einer opt. Schichtzuweisung

23 Hierarchical GD, Benjamin Stähr23 4. Knotenreihenfolge in Rängen Kanten zwischen Knoten, die mehr als einen Rang auseinander liegen werden ersetzt durch Kantenketten mit jeweils Länge 1,virtuelle Knoten werden hinzugefügt Reflexive Kanten werden ignoriert Multi-Kanten werden vereinigt Es werden Heuristiken benutzt, da bereits für zwei Schichten minimieren der Kantenüberschneidungen NP-vollst. Ist

24 Hierarchical GD, Benjamin Stähr24 Lösungsschema Startsortierungen werden errechnet Iterationssequenz um Reihenfolgen zu verbessern –Jede Iteration geht von der ersten bis zur letzten Schicht vor, oder umgekehrt –Jeder Knoten erhält eine Gewichtung aufgrund der relativen Position der mit ihm verbundenen Knoten auf der vorhergehenden Schicht –Danach werden die Schichten neu sortiert

25 Hierarchical GD, Benjamin Stähr25 Lösungsschema Populäre Gewichtsfunktionen: Barycenter: –Definiert das Gewicht eines Knoten v als den Durchschnitt der Ordnungszahlen der Knoten der letzten Schicht, die mit v verbunden sind. Median: –Wie Barycenter, allerdings wird der Median der Ordnungszahlen verwendet. –Liefert bessere Ergebnisse, Approximationsfaktor von 3

26 Hierarchical GD, Benjamin Stähr26 Lösungsschema Hier benutzte Methode basiert auf Median Wenn zwei Mediane existieren wird interpolierter Wert verwendet, der die Seite mit dichter gepackten Knoten bevorzugt Zus. Heuristik für lokales Optimum (20% - 50% weniger Kreuzungen) ab cd ab cd

27 Hierarchical GD, Benjamin Stähr27 5. Knotenkoordinaten Jeder Knoten erhält in diesem Schritt x- und y-Koordinaten LP : u.d.N.: dabei: : Interne Gewichtung um das Zeichnen langer, gerader Kanten zu bevorzugen

28 Hierarchical GD, Benjamin Stähr28 Kantentypen 1.Beide Knoten der Kante sind reale Knoten 2.Ein Knoten ist realer, einer virtueller Knoten 3.Beide Knoten sind virtuelle Knoten Seien e,f,g Kanten der drei Typen, dann gilt:

29 Hierarchical GD, Benjamin Stähr29 Lösung mit Simplex Verfahren Resultierendes LP ist total unimodular und kann daher in einem Schritt per Simplex gelöst werden Transformation bläht den Graphen leider auf Größe |V| |E| + |E²| auf Große Graphen können nicht mehr mit effizientem Platzbedarf gespeichert werden

30 Hierarchical GD, Benjamin Stähr30 Heuristischer Ansatz Eigentlich Iterationen folgender Heuristiken 1.Medianpos: 2.Minedge: ähnlich, nur für reale Knoten 2.Minnode: Lokale Optimierung obiger Methoden 3.Minpath: Begradigt Ketten virtueller Knoten (Spaghetti-Effekt verhindern) 4. Packcut: Zeichnet Knoten möglichst kompakt

31 Hierarchical GD, Benjamin Stähr31 Simplex verbessern Heuristik ist leider schwer zu implementieren und arbeitet oft suboptimal doch wieder Simplex Idee: Simplex aus 3. wiederverwenden und x- Koordinaten als Schichten ansehen Dazu muss G in einen Hilfsgraph G transformiert werden vw u vw u e evev eueu e (v,w) e

32 Hierarchical GD, Benjamin Stähr32 Simplex verbessern Optimale Lösung für G induziert optimale Lösung für G Es sind Verbesserungen möglich, die den Simplex um ca. 500 bis 1000% beschleunigen Damit schneller als heuristische Lösung

33 Hierarchical GD, Benjamin Stähr33 Weiterführende Techniken Neuerer Algorithmus nach Buchheim, Jünger und Leipert (1999) Verhindert spätere Bildung eines Spaghetti- Effekts in den Kanten Möglich dadurch, dass jede Kante nur zwei Knicke hat und dazwischen vertikal verläuft Lösungsansätze heuristisch und mit Simplex möglich, den hier vorgestellten Ansätzen recht ähnlich

34 Hierarchical GD, Benjamin Stähr34 6. Kanten zeichnen Kanten zwischen Knoten werden am einfachsten durch jeweils alle virtuellen Knoten gezeichnet Nachteil: Übersichtlichkeit leidet etwas, Graph ist optisch nicht perfekt Lösung: Verwendung von Splines

35 Hierarchical GD, Benjamin Stähr35 Berechnung von Splines B5BB5 p0 p1 p2

36 Hierarchical GD, Benjamin Stähr36 7. Zusammenfassung und Ausblick Der vorgestellte Algorithmus ist klar strukturiert und programmiertechnisch gut umsetzbar Sowohl Laufzeit als auch Zeichenergebnis sind zufriedenstellend Splines müssten nicht benutzt werden, wenn ein anderer Ansatz zur Berechnung der x,y- Koordinaten gewählt würde Evtl. wäre Kommunikation zwischen den einzelnen Schritten wünschenswert um Ergebnis zu verbessern


Herunterladen ppt "17.10.05Hierarchical GD, Benjamin Stähr1 Hierarchical Graph-Drawing Eine Technik für das Zeichnen gerichteter Graphen Referent: Benjamin Stähr Autoren."

Ähnliche Präsentationen


Google-Anzeigen