Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Die Atmosphäre und ihre Veränderungen

Ähnliche Präsentationen


Präsentation zum Thema: "Die Atmosphäre und ihre Veränderungen"—  Präsentation transkript:

1 Die Atmosphäre und ihre Veränderungen

2 Die Atmosphäre – eine verletzliche Haut

3

4 Menschen-verursachte (= anthropogene oder technogene) Veränderungen der Atmosphäre und ihre Auswirkungen Emission von Treibhausgasen wie CO 2 und CH 4 Treibhauseffekt Emission Ozon-abbauender Substanzen Ozonloch Emission von Partikeln und Nukleationskeimen Sichtverminderung, Emission von Säurebildnern (Stickoxide, SO 2 etc.) Niederschlags-, Boden-, Gewässerversauerung, Waldsterben Emission von Säurebildnern, Partikeln und photochemischer Smog, reaktiven Gasen Materialkorrosion, Gesund- heitsbeeinträchtigung durch Inhalation oder Deposition Ursache Wirkung

5 ( )

6

7 IPCC (2007): natur/0,1518,463865,00.htmlhttp://www.spiegel.de/wissenschaft/ natur/0,1518,463865,00.html Konzentrationsverlauf der Treibhaus- gase CO 2, Methan CH 4 und Lachgas N 2 O in der Erdatmosphäre über die letzten Jahre bis ins Jahr Dabei stammt nur die rote Spitze der Kurve von direkten Messungen in der Atmosphäre. Werte für weiter zurückliegende Zeitpunkte haben Wissenschaftler aus Eisbohrkernen gewonnen.

8 Ice with trapped air bubbles

9 Anthropogenic Perturbation of the Global Carbon Cycle Perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2002–2011 (PgC/yr) Source: Le Quéré et al. 2012; Global Carbon Project 2012Le Quéré et al. 2012Global Carbon Project s/CarbonBudget2012-highres.ppthttp://www.globalcarbonproject.org/carbonbudget/12/file s/CarbonBudget2012-highres.ppt ( )

10 The current global energy system is dominated by fossil fuels. ( ) On a global basis, it is estimated that renewable Energies accounted for 12.9% of the total 492 Exajoules (EJ) of primary energy supply in 2008.

11 Fate of Anthropogenic CO 2 Emissions ( average) Source: Le Quéré et al. 2012; Global Carbon Project 2012,Le Quéré et al. 2012Global Carbon Project ( ) 8.3±0.4 PgC/yr 90% + 1.0±0.5 PgC/yr 10% 2.6±0.8 PgC/yr 28% Calculated as the residual of all other flux components 4.3±0.1 PgC/yr 46% 26% 2.5±0.5 PgC/yr

12 Global Carbon Budget Emissions to the atmosphere are balanced by the sinks Averaged sinks since 1959: 44% atmosphere, 28% land, 28% ocean The dashed land-use change line does not include management-climate interactions The land sink was a source in 1987 and 1998 (1997 visible as an emission) Source: Le Quéré et al. 2012; Global Carbon Project 2012Le Quéré et al. 2012Global Carbon Project s/CarbonBudget2012-highres.ppthttp://www.globalcarbonproject.org/carbonbudget/12/file s/CarbonBudget2012-highres.ppt ( )

13 Correlation between carbon emissions, CO 2 concentrations in the atmosphere and temperature change during the last millenium

14 Annual and five-year running mean temperature change ( o C) for both hemispheres relative to the baseline period of ( ) Mean surface temperature change (°C) from 1901 to The temperature rise increases towards the North. 2. The temperature rise is smaller in the ocean water than on land surfaces. The temperature change is more pronounced in the Northern than in the Southern Hemisphere. ( )

15 Global mean temperatures rise faster and faster! The warmest 16 years of records: 1990,1995,1997,2008,2001,2004,2012,2003, 2006,1998,2002,2007,2009,2005,2011,2010 IPCC (2007):

16 Greenhouse gas (CO 2,CH 4, and N 2 O) and δ D (deuterium) records for the past yrs. from EPICA Dome C and other ice cores Brook (2005): Tiny Bubbles Tell All. Science, 310, 1285 The temperature of the last interglacial Eem (~ BP) could correspond to the temperature at 2100 AD. The sea level was 5-6 m higher than today. Vostock station ([D]/[H]) sample δD () = 1000 x ([D]/[H] standard

17 Influences of greenhouse gas emissions on climate, land and ocean ( )

18 Mann et al. (2008); Reconstructed global-average temperature relative to (blue) and projected global-average temperature out to 2100 (the latter from IPCC, 2007, different scenarios)

19 For the Fifth Assessment Report of IPCC in Oct. 2013, the scientific community has defined a set of four new scenarios, denoted Representative Concentration Pathways (RCPs). They are identified by their approximate total radiative forcing in year 2100 relative to 1750: total radiative forcing approximate CO 2 (CO 2 -eq.*) 2.6 W m -2 for RCP (475) ppm 4.5 W m -2 for RCP (630) ppm 6.0 W m -2 for RCP (800) ppm 8.5 W m -2 for RCP (1313) ppm *= CO 2 including CH 4 and N 2 O ( ) Representative Concentration Pathways (RCPs)

20 ( ) Maps representing the model scenarios RCP2.6 and RCP8.5 in 2081–2100 (a) annual mean surface temperature change, (b) average percent change in annual mean precipitation

21 Potential emissions from remaining fossil resources could result in GHG concentration levels far above 600ppm. ( )

22 Zunahme von Niederschlägen in Regionen der mittleren und hohen nördlichen Breiten um 5-10% Zunahme von Extremereignissen wie Starkniederschläge, Hitze- und Dürreperioden, das Abtauen von Gletschern, das Abschmelzen der Masse des Arktischen Eises um 40 %, das Auftauen von Dauerfrostböden (Permafrost), das spätere Zufrieren und frühere Aufbrechen von Flussvereisungen, eine Verschiebung von Lebensräumen bestimmter Tiere und Pflanzen in größere Höhen und polwärts, Übergreifen der Sahara auf S-Spanien, die Dezimierung einiger Tierpopulationen, das frühere Auftreten von Baumblüten, das Auftauchen nicht heimischer (invasiver) Insektenarten und ein verändertes Brut- und Wanderungsverhalten bei Vögeln Zunahme der Bleichung von Korallen Veränderungen durch gesteigerte Temperaturen im 20. Jahrhundert Umweltbundesamt (2005): Globaler Klimawandel. S. 7 (ergänzt)

23 Die Temperatur in der Troposphäre nimmt im Mittel um 6.5 o C pro km ab. Die Troposphäre ist etwa 11 km mächtig (Pole: 9 km, Äquator: bis 18 km). Etwa 3/4 der gesamten Atmosphären- masse befindet sich in der Troposphäre. Nahezu alles Wettergeschehen findet in der Troposphäre statt (dort ist fast alles atmosphärisches H 2 O). Troposphäre Atmosphärenaufbau (mittlere Breiten) temperature 2001 Brooks/Cole Publishing

24 Turco (1997, S )

25 ( ) Energiebilanz der Erdhülle

26 Hansen (2005): Spektrum der Wissenschaft 2/2005, S. 37

27 Global mean energy budget (W/m 2 ) under present day climate conditions. Numbers state magnitudes of the individual energy fluxes in W/m 2, adjusted within their uncertainty ranges to close the energy budgets. Numbers in parentheses attached to the energy fluxes cover the range of values in line with observational constraints. ( )

28 Globale Windzirkulations- systeme im Schnitt Idealisiertes 3-Zellen-Zirkulationsmodell

29 Rodhe (1994) in Butcher et al., p. 71 Ungefähre Abschätzung charakteristischer Zeiten für den lateralen und vertikalen Austausch zwischen Luft- bzw. Wassermassen WEEKS to 1 MONTH

30 Residence time in the atmosphere Maximum scale of the problem Quelle: EEA 1995, Centre for Airborne Organics 1997 Selected pollutants, their average residence times in the atmosphere and maximum extent of their impact UNEP (2007): Geo-4 Report. Global Environment Outlook GEO 4. S. 43.

31 Turco (1997): Earth under Siege. S : ~400 ppmv The composition of tropospheric air: volume fractions in per cent and parts per million per volume (ppmv)

32 ca. 2,72m (2008), natürlich 1,97m Roedel (2000): Physik unserer Umwelt – Die Atmosphäre. S CH 4 (Methan) ca. 0,016 m N 2 O (Lachgas) ca. 0,0022 m

33 Turco (1997): Earth under Siege. S. 52

34 Ausstrahlfenster zwischen ~7-12 µm Sorptionsbereiche typischer Treibhausgase für Strahlung Mittlere globale Temperatursteigerung durch Treibhausgase von –18 o C auf +15 o C

35 Turco (1997, S. 338)

36 Bär, M., Blaser, B. et al. (1995): Folienserie des Fonds der Chemischen Industrie. Textheft 22: Umweltbereich Luft. Frankfurt

37 Albedo: [lateinisch albus »weiß«] in Astronomie und Meteorologie ein Maß für das Rückstrahlvermögen von diffus reflektierenden Oberflächen (z.B. der Sonnenstrahlung durch Erdoberfläche und Atmosphäre). (other estimate: 5-10%)

38 Linking relative humidity to cloud feedbacks (A) Water vapor (in cm), (B) cloud fraction, and (C) reflected solar radiation (in W/m 2 ) for July Clouds cool the climate by reflecting incoming sunlight back to space, but they also warm the climate by absorbing upwelling terrestrial radiation from the surface. Their net effect is to cool the planet, but changes in clouds in response to global warming may increase or reduce this cooling. Climate models do not agree on the spatial patterns of cloud changes or their net radiative effects, and the cloud feedback is responsible for most of the uncertainty in climate sensitivity in model studies. Observational data are needed to resolve these issues. Black regions in the water vapor plot indicate missing data, often due to high cloud coverage. Regions with high cloud fraction and reflected solar radiation generally coincide with high amounts of water vapor. Note in particular the subtropical regions with low reflected solar radiation. Fasullo & Trenbert (2012) use the correlations of these three fields to relate relative humidity changes to reflected solar radiation changes and, hence, cloud feedbacks. Science 9 November 2012: vol. 338 no

39 Does temperature increased water evaporation enhance an atmospheric warming (yellow) or cooling (blue)

40 Concentration trends of carbon dioxide CO 2 (top) and methane CH 4 (bottom) in the atmosphere Annual cycle of CO 2 in the northern hemisphere CO 2 and CH 4 are the two most important anthropogenic greenhouse gases. The trends with seasonal cycle removed are shown in red. Jan. April July Oct. Jan. Photo- synthesis Decay of org. mat. Decay of organic material

41 Pre-industrial and recent (2011) greenhouse gas concentrations in the tropo- sphere Blasing (2012): Carbon Dioxide Information Analysis Center; ( )

42 Classes of Compounds of Halocarbons Chlorofluorocarbons (CFCs): when derived from methane and ethane these compounds have the formulae CCl m F 4-m and C 2 Cl m F 6-m, where m is nonzero. Hydrochlorofluorocarbons (HCFCs): when derived from methane and ethane these compounds have the formulae CCl m F n H 4-m-n and C 2 Cl x F y H 6-x-y, where m, n, x, and y are nonzero (commercial: e.g. Freon). Bromochlorofluorocarbons and bromofluorocarbons have formulae similar to the CFCs and HCFCs but also bromine (commercial: e.g. halones). Hydrofluorocarbons (HFCs): when derived from methane, ethane, propane, and butane, these compounds have the respective formulae CF m H 4-m, C 2 F m H 6-m, C 3 F m H 8-m, and C 4 F m H 10-m, where m is nonzero. Perfluorinated compounds (PFCs) refer to a class of organofluorine compounds that have all hydrogens replaced with fluorine on a carbon chain.

43 Shares of anthropogenic sources of global greenhouse gas emissions in 2010 (50.1 GtCO 2 e) by main sector and gas type (in CO 2 -equivalent) ( ); McKeown & Gradner (2009): Climate Change Reference Guide. Worldwatch Institute, 17 pp. The primary human-generated greenhouse gases are CO 2, CH 4, fluorinated gases (including CFCs = chlorofluorocarbons), N 2 O, and O 3. Greenhouse gases are only one source of climate change; aerosols such as black carbon, sulfuric acid, and solar radiation also affect warming.

44 ( ); McKeown & Gradner (2009): Climate Change Reference Guide. Worldwatch Institute, 17 pp. Shares of anthropogenic sources of global greenhouse gas emissions in 2010 (50.1 GtCO 2 e) by main sector (in CO 2 -equivalent)

45 Trend in global greenhouse gas emissions by sector. This graph shows emissions of 50.1 Gt CO 2 eq in ( )

46 Agnew et al. (2004): An Introduction to Environmental Chemistry. S. 252 CO 2 -Emissionen (1980 und 1989) in Abhängigkeit vom Breitengrad

47 Global Carbon Storage in Above- and Below-Ground Live Vegetation Despite constant exchanges of C between forest biomass, soils, and the atmosphere, a large amount is always present in leaves and woody tissue, roots, and soils. This quanti- ty of C is known as the carbon store. C sequestration and storage slow the rate at which CO 2 accumulates in the atmosphere and mitigate global warming billion tons of C are estimated to be stored in the worlds above- and below-ground live vegetation. 1 ha = m 2 World Resources Institute and PAGE (2000)

48 Global Carbon Storage in Soils (World Resources Institute and PAGE, 2000) WRIs estimates of carbon stores in soils are based on those of Batjes (Batjes, 1996), who estimated the global stock of organic carbon in the upper 100 cm of the soil to be between 1,462 and 1,548 billion tons of carbon. Carbon storage values in the boreal region reach a maximum of 1250 metric tons of carbon per hectare.

49 (11/2011) The carbon store depicted in this map is 2,385 billion tons. The low-end estimate is 1,752 billion tons (World Resources Institute and PAGE, 2000). Forest ecosystems account for about 40 % of the total carbon, about 34 % is stored in grasslands, about 17 % in agricultural lands. The highest quantities of stored carbon are located in the tropical and boreal forest regions. In the tropics, more carbon is stored in vegetation than in soils while in the boreal region far more carbon is stored in the soils. Peatlands in the boreal region are especially important areas because of the large quantities of soil carbon stored per unit area. Global carbon storage in above- and below-ground live vegetation and soils (World Resources Institute and PAGE, 2000)

50 Baumert et al (2005) Sources of CO 2 emissions from global land use change 2000 Afforestation: establishment of a forest or stand of trees in an area where there was no forest. Reforestation: reestablishment of forests, either naturally or artificially (direct seeding or planting)

51 Temporal evolution of the atmospheric carbon balance over the years Red line: CO 2 emissions from fossil fuel burning. ( ) The interannual variability is driven primarily by climate variations. Drought conditions in important large terrestrial ecosystems, e.g. in the Amazonas basin during El Niño phases induce carbon losses by decreased photosynthesis, increased decomposition and/or increased wildfires.

52 Increase in global temperatures may both increase and decrease the atmospheric CO 2. content: Scenario 1: Rising temperatures facilitate the release of soil carbon from organic matter, which is oxidized to CO 2. earthobservatory.nasa.gov/Study/Conundrum / Scenario 2: However, increased temperature also leads to increased growth in plants, which absorb CO 2 (if enough water is available).

53 Sarmiento & Gruber (2002)

54 Annual methane emissions from anthropogenic and natural sources Annual methane sinks ( ) Total CH 4 yearly flux for ( )

55 IPCC (2001)

56 Sonnenflecken erscheinen dunkel, weil das starke Magnetfeld den Energietrans- port durch Gasströmungen aus dem Son- neninneren unterdrückt (~1500 o C kühler). Man muss über Jahre in der Erdgeschich- te zurückgehen, bis man einen Zeitraum findet, in dem die Sonne im Mittel ebenso aktiv war wie in den vergangenen 60 Jahren (Basis 14 C). Sonnenaktivität und Klima Sami K. Solanki, Ilya G. Usoskin, Bernd Kromer, Manfred Schüssler, Jürg Beer: Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 28 October 2004 Eine Abnahme der Aktivität wird in wenigen Jahrzehnten erwartet. Es ist offen, inwieweit diese Aktivitäten das Klima beeinflussen. Sonnenfleckenhäufigkeit (10 Jahres- Mittelwerte seit der Eiszeit) vergrößerter Ausschnitt (8.11/2012)

57 Bestimmt die wechselnde Sonnenaktivität unser Klima? Verlauf der mittleren Temperatur der Atmosphäre und der Strahlungsleistung der Sonne: Zwischen beiden Größen gibt es nur bis etwa 1980 auffallende Parallelen. (8.11/2012)Max-Planck-Institut für Sonnensystemforschung (2005)

58 Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertaini- ties for the main drivers of climate change. ( )


Herunterladen ppt "Die Atmosphäre und ihre Veränderungen"

Ähnliche Präsentationen


Google-Anzeigen