Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

IEMS-DM Diskrete Methoden Schedulingalgorithmen Prof. Dr. Th. Ottmann.

Ähnliche Präsentationen


Präsentation zum Thema: "IEMS-DM Diskrete Methoden Schedulingalgorithmen Prof. Dr. Th. Ottmann."—  Präsentation transkript:

1 IEMS-DM Diskrete Methoden Schedulingalgorithmen Prof. Dr. Th. Ottmann

2 2IEMS-DM Lernziele Welche Bedeutung spielt Scheduling für eingebettete Systeme? Welche Arten von Schedulingproblemen gibt es? Wie kann man auszuführende Aktivitäten (Tasks) effizient mit einem passenden Schedulingalgorithmus einplanen? Beispiele für Scheduling Verfahren: EDD (Earliest Due Date) EDF (Earliest Deadline First)

3 3IEMS-DM Bedeutung von Scheduling für eingebettete Systeme Eingebettete Systeme als Echtzeitsysteme: Häufig wird von eingebetteten Systemen verlangt, dass sie in fest definierten Zeitschranken arbeiten und mit der Außenwelt kommunizieren, sie sind sogenannte Echtzeit-Computersysteme. Beispiele für Anwendungen: Kontrolle von Produktionsprozessen, Verkehrsleitsysteme, Telekommunikation, Robotersteuerung, … In Echtzeit Systemen unterscheidet man: harte Tasks: Verpassen der Deadline kann katastrophale Folgen haben weiche Tasks: Einhalten der Deadline ist erwünscht, aber nicht zwingend

4 4IEMS-DM Bedeutung von Scheduling für eingebettete Systeme Ausführungszeiten der Tasks müssen bekannt sein. Problem: Ausführungszeiten schwierig zu bestimmen oder unbekannt Lösung: Schätze sichere obere Schranken für das Ausführungsende (WCET) Die jeweils anstehenden Aufgaben (Aktivitäten, Jobs, Tasks) müssen zeiteffizient mit einem Schedulingverfahren eingeplant werden.

5 5IEMS-DM Klassifkation u. Definitionen von Schedulingverfahren Periodische (vs. aperiodische) Tasks Tasks, die alle p Zeiteinheiten ausgeführt werden müssen. p ist die Periode. Jede Ausführung eines periodischen Tasks heißt Job. Präemptives (vs. nicht-präemptives) Scheduling präemptiv bedeutet, dass ein Task unterbrochen werden kann und später fortgesetzt werden kann. Ermöglicht u.a. Reaktion auf externe Ereignisse. Dynamisches (vs. statisches) Scheduling Einplanung / Umplanung zur Laufzeit Harte (vs. weiche) Zeitbedingungen Zeitschranken dürfen nicht überschritten werden Tasks-Beschreibungsliste (TDL) Ausführung durch Dispatcher in zeitgesteuerten Betriebssystemen

6 6IEMS-DM Statisches vs. dynamisches Scheduling Statisches (Offline-)Scheduling: Die Startzeiten aller Tasks werden vorab berechnet, in einer Tabelle niedergelegt (Task-Beschreibungs-Liste, TDL) und an einen zeitgesteuerten Dispatcher weitergeleitet. Dynamisches (Online-)Scheduling: Entscheidungen über Prozessorzuweisungen (Scheduling) erfolgen zur Laufzeit. Die Entscheidungen werden aufgrund von Informationen über bisher angekommene Tasks getroffen Annahme: Ein-Prozessorsystem

7 7IEMS-DM Beispiel Taskbeschreibungsliste Taskbeschreibungslisten (TDL) werden vom Dispatcher interpretiert und die entsprechenden Tasks angestoßen und überwacht Der Dispatcher arbeitet taktgesteuert (synchron) Beispiel: ZEITAktionWCET 10starte T116 15sende M5 26stoppe T1 33starte T237...

8 8IEMS-DM Beispiel eines Schedules von drei Tasks Scheduling auf einem Prozessor t4t4 t3t3 t2t2 t1t1 J1J1 J2J2 J3J3 (t)

9 9IEMS-DM Beispiel eines präemptiven Schedules Scheduling auf einem Prozessor t6t6 t3t3 t2t2 t1t1 J1J1 J2J2 J3J3 t4t4 t5t5 J2J2 J1J1 (t)

10 10IEMS-DM Zeitgesteuerte Systeme … pre-run-time scheduling is often the only practical means of providing predictability in a complex system. [Xu, Parnas]. Vorteil: Es ist einfach, zu prüfen, ob die Zeitbedingen erfüllt sind. Nachteil: Antwortzeiten auf seltene Ereignisse können lang sein.

11 11IEMS-DM necessary Schedulability Eine Menge von Tasks heißt schedulable bzgl. einer gegebenen Menge von Bedingungen, wenn für die Menge ein Schedule existiert, der die Bedingungen erfüllt. Exakte Tests sind häufig NP-hard. Sufficiency Test: Prüft hinreichende Bedingungen für die Existenz eines Schedules. Folge: Es können Schedules existieren, obwohl die Bedingungen nicht gelten. Necessary Test: Prüft notwendige Bedingungen für die Existenz eines Schedules. Wird meistens benutzt zum Nachweis, dass kein Schedule existiert. schedulable sufficient

12 12IEMS-DM Charakteristika von Tasks und Schedules Task J i wird charakterisiert durch: Ankunftszeit a i Ausführungszeit C i Deadline d i Start Zeit s i Endzeit f i Optimierungsziele: Minimiere Durchschnittliche Antwortzeit t r = 1/n i=1 n (f i – a i ) Maximale Verspätung (maximum lateness): L max = max i (f i – d i )

13 13IEMS-DM Maximale Verspätung Def.: Maximale Verspätung (Maximum lateness) = max all tasks (completion time – deadline) Maximale Verspätung ist < 0, wenn alle Tasks vor ihren jeweiligen Deadlines beendet sind. t T1 T2 Max. lateness

14 14IEMS-DM Schedulingverfahren von Jackson Scheduling auf einem Prozessor. Alle n Tasks sind unabhängig voneinander und können zur gleichen Zeit begonnen werden (zum Zeitpunkt 0). EDD: Earliest Due Date (Jackson, 1955) Jeder Algorithmus, der die Tasks in der Reihenfolge nicht abnehmender Deadlines ausführt, ist optimal bzgl. der Minimierung der maximalen Verspätung Bew. (Butazzo, 2002): Sei A ein Algorithmus, der verschieden von EDD ist. Dann gibt es zwei Tasks J a und J b in dem von A erzeugten Schedule σ, so dass in σ J b unmittelbar vor J a steht, aber d a d b ist: JbJb JaJa dada dbdb

15 15IEMS-DM Optimalität von EDD Sei ein Schedule, der von einem Algorithmus A erzeugt wird. Wenn A EDD J a, J b, d a d b, J b geht J a in unmittelbar voraus. Die maximale Verspätung für J a und J b in ist L max (a,b) = f a -d a JbJb JaJa dada dbdb

16 16IEMS-DM Jackson´s Algorithmus (1) Idee: Vertausche in σ J a und J b und zeige, dass die maximale Verspätung höchstens abnimmt. Fall 1: L´ a = f´ a – d´ a f´ b – d´ b = L´ b L' max (a,b) = f' a – d a < f a – d a = L max (a,b) weil J a im Schedule ´ eher startet als in. JbJb JaJa f´ a fbfb JaJa JbJb dada dbdb fafa σ σ´σ´

17 17IEMS-DM Jackson´s Algorithmus (2) Idee: Vertausche in σ J a und J b und zeige, dass die maximale Verspätung höchstens abnimmt. Fall 2: L´ a = f´ a – d´ a f´ b – d´ b = L´ b L' max (a,b) = f' b – d b = f a – d b f a – d a = L max (a,b), weil f a =f' b und d a d b Also ist in jedem Fall L' max (a,b) L max (a,b) JbJb JaJa f´ a fbfb JaJa JbJb dada dbdb fafa σ σ´σ´

18 18IEMS-DM EDD ist optimal Jeder Schedule mit Verspätung L kann transformiert werden in einen EDD Schedule n mit Verspätung L n L; dieser muss also minimale Verspätung haben. EDD ist optimal (q.e.d.)

19 19IEMS-DM Jackson´s Algorithmus (3) EDD-Algorithmus: Sortiere die n Tasks J 1, …, J n nach aufsteigenden Deadlines d 1, …, d n und führe sie in dieser Reihenfolge aus! Ausführungszeit (für Berechnung eines optimalen Schedules): O(n log n)

20 20IEMS-DM Schedulingverfahren von Horn (EDF) Scheduling auf einem Prozessor. Tasks können zu verschiedenen Zeitpunkten ankommen (ausführungsbereit sein) und unterbrochen ausgeführt werden (preemption erlaubt). EDF: Earliest Deadline First (Horn, 1975) Jeder Algorithmus, der zu jedem Zeitpunkt diejenige ausführungsbereite Task mit der frühesten absoluten Deadline ausführt, ist optimal bzgl. der Minimierung der maximalen Verspätung.

21 21IEMS-DM Schedulingverfahren von Horn (EDF) Jede ankommende ausführbare Task wird entsprechend ihrer absoluten Deadline in die Warteschleife der ausführbaren Tasks eingereiht Wird eine neu ankommende Task als erstes Element in die Warteschlange eingefügt, muss gerade ausgeführte Task unterbrochen werden Effizienz von EDF hängt von Priority Queue Implementation ab! Sorted queue Executing task

22 22IEMS-DM Earliest Deadline First (EDF): Beispiel spätere Deadline no preemption frühere Deadline preemption

23 23IEMS-DM Optimalität von of EDF (1) Zu zeigen: EDF minimiert die maximale Verspätung. Beweis (Buttazzo, 2002): Sei ein Schedule, der von einem Verfahren A erzeugt wird. Sei EDF ein von EDF erzeugter Schedule. Präemption sei erlaubt: Tasks werden in disjunkten Zeitintervallen ausgeführt wird in Zeitscheiben der Einheitslänge 1 unterteilt Zeitscheiben werden mit [t, t+1) bezeichnet Sei (t) die in [t, t+1) ausgeführte Tasks. Sei E(t) die Tasks, die zum Zeitpunkt t die früheste deadline hat. Sei t E (t) die Zeit ( t) zu der die nächste Zeitscheibe der Tasks E(t) im Schedule ausgeführt wird.

24 24IEMS-DM Optimalität von EDF (2) Wenn EDF, dann gibt es eine Zeit t: (t) E(t) Idee: vertausche (t) und E(t) ohne die max. lateness zu vergrößern Wenn (t) zur Zeit t=0 startet und D=max i {d i }, dann kann EDF aus mit höchstens D Vertauschungen erzeugt werden T1T1 T3T3 T2T2 T4T4 (t)=4; (t E )= T1T1 T3T3 T2T2 T4T4 (t)=2; (t E )=4 t t t t t t t t [Buttazzo, 2002]

25 25IEMS-DM Optimalität von EDF (3) Algorithmus interchange : { for (t=0 to D -1) { if ( (t) E(t)) { (t E ) = (t); (t) = E(t); }}} Mit Hilfe eines analogen Arguments wie beim Jackson Algorithmus kann man zeigen, dass die maximale Verspätung nicht zunehmen kann; also ist EDF optimal. Konserviert interchange Schedulability? 1.Task E(t) wird vorgezogen: Deadline im neuen Schedule wird eingehalten, wenn Deadline in eingehalten wird. 2.Task (t) wird verzögert: Wenn (t) ausführbar ist, dann ist (t E +1) d E, wobei d E die früheste Deadline ist. Weil d E d i für jedes i, folgt t E +1 d i, das garantiert Schedulability der verzögerten Task (Zeitscheibe). q.e.d. [Buttazzo, 2002]

26 26IEMS-DM Scheduling von abhängigen Tasks Task Graph und ein möglicher Schedule Schedule kann in Tabelle gespeichert werden.

27 27IEMS-DM Gleichzeitig ankommende Tasks: LDF The Latest Deadline First (LDF) Algorithm [Lawler, 1973]: LDF liest den Task Graph und legt von allen Tasks ohne Nachfolger jeweils den mit spätester Deadline in einem Stapel ab. Das wird für alle verbleibenden Tasks wiederholt. Zur Laufzeit werden die Tasks in der so erzeugten Reihenfolge ausgeführt. LDF ist nicht-präemptiv und is optimal für Ein-Prozessorsysteme. Wenn es nur eine globale Deadline gibt, führt LDF eine topologische Sortierung der Tasks durch.

28 28IEMS-DM Asynchron ankommende Tasks: mEDF Dieser Fall kann mit einer Modifikation des EDF Algorithmus behandelt werden: mEDF-Algorithmus Idee: Verwandle das Scheduling Problem für die Menge abhängiger Tasks in ein Scheduling Problem für unabhängige Tasks mit geeignet gewählten Zeitparametern [Chetto90]. Dieser Algorithmus ist optimal für Ein-Prozessor Systeme.

29 29IEMS-DM Zusammenfassung Worst case execution times (WCET) Definition von Begriffen im Scheduling: Harte vs. weiche Deadlines Statisches vs. dynamisches Scheduling Schedulability Scheduling Verfahren Aperiodische Tasks ohne Abhängigkeiten alle Tasks gleichzeitig verfügbar ( EDD) asynchrone Ankunftszeiten ( EDF) Abhängigkeiten (Precedences) alle Tasks gleichzeitig verfügbar ( LDF) asynchrone Ankunftszeiten ( mEDF)

30 30IEMS-DM Literatur P. Marwedel: Eingebettete Systeme, Springer-Verlag, Berlin u.a., 2007 G.C. Buttazzo: Hard Real-Time Computing Systems, Predictable Scheduling Algorithms and Applications, Kluwer Academic Publishers, Boston u.a., 2002 P. Brucker: Scheduling Algorithms, 5th ed., Springer-Verlag, Berlin u.a., 2007


Herunterladen ppt "IEMS-DM Diskrete Methoden Schedulingalgorithmen Prof. Dr. Th. Ottmann."

Ähnliche Präsentationen


Google-Anzeigen