Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Rail Solutions HAWKER Battery System Container + 2 x 108V4PzV280.

Ähnliche Präsentationen

Präsentation zum Thema: "Rail Solutions HAWKER Battery System Container + 2 x 108V4PzV280."—  Präsentation transkript:

1 Rail Solutions HAWKER Battery System Container + 2 x 108V4PzV280

2 17/07/2015Enersys Rail Solutions2 Project details As part of the ICEx project, Siemens is developing for DB Fernverkehr AG a high- speed trainset with multi-system capability for use in Germany and Austria as well as potentially for use in Switzerland, the Netherlands, Poland, the Czech Republic, Slovakia, Hungary, France, Luxembourg, Denmark and Italy. Enersys is entitled to request delivery of up to 330 trainsets in the period from (contract date) until HAWKER GmbH Germany get in February 2012 ( after 3 years from the first offer) the order for delivery of 345 battery systems + and in 2013 the option for addition 85 systems. The project will start in 2014 with 15 battery units. The serial production will start in Siemens has as consortial partner the BOMBARDIER(BT) company in Henningsdorf /Germany. About 65% of the batteries will be delivered to BT for the end cars.

3 17/07/2015Enersys Rail Solutions3 Container with 2 battery units a 108V4PzV280

4 17/07/2015Enersys Rail Solutions4 Structure of manufactoring HAWKER get from Siemens the order for the battery system (container and batteries) The design and manufactoring of the container is made by the company Homrich Maschinenbau (SLV certified company for developing and welding for the DB) as subsupplier from HAWKER The EvoRail cells 4 PzV280 are manufactured in Arras The battery assembling into the container trays will be done in Hagen The systems will be delivered to Siemens Krefeld and to Bombardier Henningsdorf, according to the delivery plan.

5 17/07/2015Enersys Rail Solutions5 Some steps before contract signature 1.A detailed analysis of the inquiry documents 2.Are the normatives available and can we fulfill them? 3.A calculation of the needed battery solution based on the battery load profile 4.Lab tests for verification of the calculated solution 5.Cost calculation based on the proposed solution 6.Offer with addition documents like LCC RAM, data sheets of the offered cells 7.Meetings and presentations of our first solution in Erlangen/Siemens 8.Signature of a non disclosure document with Siemens 9.A Siemens quality audit of the HAWKER GmbH on the A detailed analyses of the contractual documents wording, legal issues, credit limits, payments conditions, delivery times, warranty, claims

6 17/07/2015Enersys Rail Solutions6 Basis normatives

7 17/07/2015Enersys Rail Solutions7 Project documents and steps

8 17/07/2015Enersys Rail Solutions8 Project documents and steps

9 17/07/2015Enersys Rail Solutions9 Project documents and steps

10 17/07/2015Enersys Rail Solutions10 Project documents and steps

11 17/07/2015Enersys Rail Solutions11 Container Batteriesystem 2 x108V 4PzV280

12 17/07/2015Enersys Rail Solutions12 Datenblatt Batteriezelle 4 PzV280

13 17/07/2015Enersys Rail Solutions13 Datenblatt Batteriezelle 4 PzV280

14 17/07/2015Enersys Rail Solutions14 Anordnung Komponenten

15 17/07/2015Enersys Rail Solutions15 Sicherungen im Container

16 17/07/2015Enersys Rail Solutions16 Zubehör Haupsicherungen im Container

17 17/07/2015Enersys Rail Solutions17 Werkstatt Lade Sicherungen im Container

18 17/07/2015Enersys Rail Solutions18 Luftbedarfs Berechnung nach EN : Luftbedarfsberechnung nach DIN EN , Abschnitt 8.2, bei Ladung mit IU Kennlinie (im Betrieb bei Ladung mit dem „on board „ Ladegerät): Q gesamt = 0,05 * n * Igas * 10 -³ [m³/h], wobei der Strom Igas = I float/boost * fg *fs [mA/Ah ] I float = der Erhaltungsladestrom im vollgeladenen Zustand mit einer festgelegten Erhaltungsladespannung bei 20°C, I float = 1 mA/Ah I boost = der Starkladestrom im vollgeladenen Zustand mit einer festgelegten Starkladespannung bei 20°C, I boost = 8 mA/Ah fg = Gasemmisionsfaktor, Anteil des Stromes der im vollgeladenen Zustand die Wasserstoffbildung verursacht, fg = 0,2 fs = Sicherheitsfaktor, zur Berücksichtigung von fehlerhaften Zellen und gealterten Batterien, fs = 5. Q = 0,05 * 108 * 8*10 -³ *280*0,2*5 = 12,096 = 12,1 m³/h. Minimaler Öffnungsquerschnitt A = 28 * Q = 28 * 12,1 = 338,8 cm² jeweils für Zuluft und für Abluft. Die Öffnungen an den Türen des Batteriecontainers müssen jeweils 338,8 cm² für Zuluft und Abluft sicherstellen. Minimaler Abstand von funkenbildenden Mitteln:

19 17/07/2015Enersys Rail Solutions19 Türklappen mit Lüftungsöffnung

20 17/07/2015Enersys Rail Solutions20 Batterie Wechsel Gestell

21 17/07/2015Enersys Rail Solutions21 Batterie Wechsel Gestell

22 17/07/2015Enersys Rail Solutions22 Zulassungen Deutsche Bahn AG PzS Batterien PzV Batterien

23 17/07/2015Enersys Rail Solutions23 Zulassungen Deutsche Bahn AG Zulassungszertifikat PzV Zellen

24 17/07/2015Enersys Rail Solutions24 Low temperature application- avoid freezing

Download ppt "Rail Solutions HAWKER Battery System Container + 2 x 108V4PzV280."

Ähnliche Präsentationen

Ads by Google