Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Neutrino Astronomie Christian Sailer Universität Karlsruhe.

Ähnliche Präsentationen


Präsentation zum Thema: "Neutrino Astronomie Christian Sailer Universität Karlsruhe."—  Präsentation transkript:

1 Neutrino Astronomie Christian Sailer Universität Karlsruhe

2 Inhalt Neutrinos Warum Neutrino-Astronomie? Das Rätsel der höchstenergetischen kosmischen Strahlung Neutrinos als Analysewerkzeug für die Quellen der ultra- hochenergetischen Kosmischen Strahlung erwartete und garantierte Neutrinoflüsse Detektion von hochenergetischen Neutrinos Detektionsprinzip Experimente zur Detektion hochenergetischer Neutrinos Ergebnisse und Ausblick

3 Einleitung Neutrinos

4 Neutrino - Wechselwirkungen Lepton, das nur schwach oder gravitationell inter- agieren kann, z.B. ein Elektronneutrino charged current (CC) neutral current (NC)

5 Neutrino - Wechselwirkungen Wirkungsquerschnitt äußerst gering, z.B. für ein Elektronneutrino auf ein festes Eisentarget ist was (bei E =1MeV) einer Wechselwirkungslänge entspräche! Mit steigenden Energien steigt auch die schwache Kopplungskonstante Erde ist für ein PeV-Neutrino nicht mehr transparent!

6 Astronomie mit Neutrinos Photonen können absorbiert werden Geladene Teilchen werden von kosmischen Magnetfeldern abgelenkt Ihre Herkunft ist nicht mehr ermittelbar Nur Neutrinos geben sicher Auskunft über ihre Herkunft und über Vorgänge in dichten, für andere Teilchen nicht- transparente Regionen

7 Bild: Super-Kamiokande und SOHO Bisherige Beobachtungen Beobachtung solarer Neutrinos, z.B. mittels Wasser- Cerenkov- Detektoren wie Super-Kamiokande

8 Bild: Super-Kamiokande und SOHO Bisherige Beobachtungen Nachweis, für Fusion im Innern der Sonne Bestätigung der Sonnenmodelle Entdeckung der Neutrino- Oszillation

9 Bisherige Beobachtungen 1987 wurde in der Großen Magellanschen Wolke eine Supernova beobachtet ~20 Neutrinoereignisse am KAMIOKANDE-II konnten später dieser Supernova zugeordnet werden kamen früher an als Licht, da sie der Supernova früher entkamen Bestätigung der Supernova- Modelle Bild: Hubble Space Telescope

10 Motivation Warum (Hochenergie-) Neutrino-Astronomie?

11 Kosmische Strahlung bis ~10 15 eV Diagramm nach S. Swordy, Univ. Chicago Etwa bis zum Knie ist Kosmische Strahlung (KS) mit Supernova- Überresten (SNR) erklärbar

12 Kosmische Strahlung bis ~10 18 eV Diagramm nach S. Swordy, Univ. Chicago Darüber sind Energien erklärbar durch Beschleunigung z.B. in Binärsystemen, Neutronensternen,… Ab eV wird Übergang von galaktischen zu extragalaktischen Quellen vermutet, da gyromagnetischer Radius größer als Galaxis wird

13 Höchstenergetische KS Bei sehr hohen Energien ist die Herkunft mit konventionellen Modellen nur noch schwer erklärbar Höchstenergetische KS (UHECR) wurde aber von zwei Experimenten beobachtet AGASA Diagramm: AGASA Kollaboration

14 Woher stammen p mit E>EeV? sogenannte Bottom-Up- Modelle, d.h. Teilchen werden durch Schock- beschleunigung auf höhere Energien gebracht In Bereich mit Magnetfeld B, Ausdehnung L und Geschwindigkeit der Schockfront s c können Teilchen mit Ladung ze maximal auf E max ~ s zBL beschleunigt werden. Mögliche Quellen werden in Hillas-Diagrammen aufgetragen Diagramm: H.Blümer, Univ. Karlsruhe

15 Greisen-Zatsepin-Kuzmin cutoff Protonen mit Energien > 50 EeV können mit Photonen der kosmischen Hintergrundstrahlung wechselwirken, wobei Pionen entstehen => Höchstenergetische Protonen haben nur eine beschränkte Reichweite (~10 Mpc für ein Protonmit 100 EeV) => Quellen müssen in unserem Supercluster sein

16 GZK - Effekt Simulation des Energieverlustes hochenergtischer Protonen durch GZK Protonen mit unterschiedlichen Energien werden nach ca. 100 Mpc auf die GZK- Schwellenenergie abgebremst Bild: F.A. Aharonian, J.W. Cronin, Univ. Chicago E 0 = eV E 0 = eV E 0 = eV

17 Sehen wir einen GZK cutoff? HiRes beobachtet Abfallen des Flusses konform mit einem GZK- cutoff Nach AGASA setzt sich das Spektrum hingegen ohne Cutoff fort HiRes-Collaboration

18 Top-Down Modelle Top-Down Modelle umgehen das GZK-Problem, weil die Quellen lokal wären Kosmische Strahlung ist Zerfallsprodukt aus kosmologischen Überresten M GUT ~ eV, z.B. X-Teilchen aus GUT topologische Defekte Z-bursts

19 Neutrinos als weitere Observable Sowohl Bottom-Up als auch Top-Down- Modelle sagen einen begleitenden Fluss hochenergetischer Neutrinos voraus! Messungen des assoziierten Neutrino-Flusses können die verschiedenen Modelle überprüfen

20 Protonen werden in Region mit hohem Magnetfeld beschleunigt Einige Protonen interagieren mit Photonen oder anderen Protonen zu Pionen zerfallen zu zwei und einem e, 0 in zwei Photonen Energie in etwa gleich verteilt zwischen KS, Gammastrahlung und Neutrinos Neutrinos aus Bottom-Up-Modellen

21 Korrelation zwischen Spektrum der KS mit dem der Neutrinos Vorhergesagter -Fluss (Waxman-Bahcall) ist relativ gering: ~10-50 pro km² und Jahr Detektoren mit km³ Volumen Waxman-Bahcall-Fluss

22 Beispiel: Gamma Ray Bursts GRBs sind gewaltige Energieausbrüche (~10 45 J/s), v.a. im Gammabereich

23 Eigenschaften von GRBs Die hohe Helligkeit führte zur Annahme, dass die Quellen in unserer Galaxie liegen Wurde widerlegt durch die sehr gleichmäßige Verteilung der beobachteten GRBs Strahlung wird nur in kleinen Raumwinkel abgegeben GRBs sind kurz (Zeitskala: Millisekunden bis Minuten) Veränderungen im Spektrum treten innerhalb von Millisekunden auf =>Kompakte Quelle mit R ~ 100km

24 GRBs: Feuerball-Modell Ähnlich wie frühes expandierendes Universum: Strahlungsdominierte Suppe aus Leptonen, Photonen und einige Baryonen Heiß genug für freie Paarbildung Photonen sind im Feuerball gefangen Strahlungsdruck treibt relativistische Expansion an

25 GRBs: Feuerball-Modell Leptonen und Baryonen werden mitbeschleunigt Bei genügend großer Ausdehnung wird Medium transparent, d.h. Strahlung wird freigelassen und die Beschleunigung endet Forderungen an die Beschleunigungszeit und die Stärke der Beschleunigung führen auf mögliche Protonenenergien von eV Neutrinos werden v.a. bei Wechselwirkungen zwischen Protonen mit Photonen des Feuerballs erzeugt Vorausgesagter -Fluss: ~ 25 pro km² und Jahr

26 Beispiel: Aktive Galaktische Kerne Aktive galaktische Kerne (AGN) sind viel versprechende Kandidaten als Quelle Bestehen in der Kernregion aus einem supermassiven Schwarzen Loch, das von einer Akkretionsscheibe umgeben ist Senkrecht dazu bildet sich ein hochrelativistischer Jet aus Könnte Quelle für höchst- energetische Protonen sein Vorausgesagter -Fluss: ~ 1-70 pro km² und Jahr M87 Bild: Hubble Space Telescope

27 Neutrinos aus Top-Down-Modellen Bei Top-Down-Modellen entstehen Neutrinos aus Zerfällen von kurzlebigen Vorgängerteilchen Top-Down-Modelle sagen relativ hohe Flüsse bei hohen Energien voraus Diagramm: G.Sigl, Institut dAstrophysique Paris

28 GZK-Neutrinos als garantierter Fluss Der GZK-Effekt erzeugt auch Neutrinos Erwartete Flüsse sind aber gering: ~ 0,1 bis ~ einige pro km² und Jahr

29 Atmosphärische Neutrinos Eine hohe Anzahl an Neutrinos wird in der Atmosphäre bei Luftschauern erzeugt, z.B. beim Zerfall geladener Pionen in Myonen und bei deren weiterem Zerfall in Elektronen Erzeugen hohen -Fluss, v.a. bei niedrigen bis mittelhohen Energien

30 Résumé: erwartete -Flüsse Garantierte Flüsse: Atmosphärische Neutrinos Neutrinos aus Wechselwirkungen der KS mit interstellarer Materie, Spektrum sollte dem der KS entsprechen GZK-Neutrinos Modellrechnungen liefern Flüsse für mögliche Quellen aus: Bottom-up-Modellen, wie AGNs und GRBs Top-Down-Modellen

31 Résumé: erwartete -Flüsse 1 pp core AGN (Nellen) 2 p core AGN Stecker & Salomon) 3 p maximum model (Mannheim et al.) 4 p blazar jets (Mannh) 5 p AGN (Rachen & Biermann) 6 pp AGN (Mannheim) 7 GRB (Waxman & Bahcall) 8 TD (Sigl) Diagramm: Mannheim, Learned

32 Zusammenfassung UHECRs existieren! Sie wurden beobachtet! Die Quellen sind aber noch unklar. Es gibt zwei Erklärungsansätze für ihre Herkunft: bottom-up: Beschleunigung in klassischen Quellen, Problem ist eventuell der GZK-cutoff top-down: UHECRs sind Zerfallsprodukt aus exotischen Teilchen, Quellen in der Nähe könnten GZK-cutoff umgehen In beiden Fällen müssen UHECRs mit einem Neutrino-Fluss assoziiert sein mit Neutrino-Astronomie könnte man die Quellen beobachten und die Mechanismen für die Erzeugung von UHECRs untersuchen

33 Detektion Detektion von hochenergetischen Neutrinos

34 Optischer Cerenkov-Effekt Geladene Teilchen mit Überlichtgeschwindig- keit in einem Medium strahlen Licht entlang eines Machkegels aus Abstrahlwinkel gegeben durch Strahlung ist sehr breitbandig, hier wird nur im optischen Bereich mit Photomultiplier (PMT) detektiert Bild: Wikipedia

35 Anforderungen an das Medium Es gibt einige Bedingungen die das Medium erfüllen muss: möglichst transparent Brechungsindex n groß muss in großer Menge vorhanden sein Sollte idealerweise an einem Ort sein, der von atmosphärischen Myonen gut abgeschirmt ist Geeignet: Wasser und Eis

36 Technische Probleme In Eis Schwierige Verhältnisse in Antarktis Streuung im Eis (Schichtung, Lufteinschlüsse) Nur Tiefen bis ca m möglich In Wasser Biolumineszenz im Meerwasser Verschmutzung der Photomultiplier durch Pflanzen Licht von radioaktiven Zerfällen (v.a. 40 K in Salzwasser) Für Wasser und Eis Hoher Untergrund durch atmospärische Myonen und Neutrinos

37 Prinzip eines Cerenkov-Detektors Cerenkov-Strahlung wird detektiert mit dreidimensionalem Array aus PMTs in ~2-4 km Tiefe Abstand der PMTs ist einige Meter Abstand der Stränge ~ 50m PMTs müssen eine Zeitauflösung von <5ns besitzen Graphik: ANTARES Collaboration

38 Nachweis von Myon-Neutrinos Myon-Neutrinos erzeugen in CC- Prozess Myonen Myonen haben sehr hohe Reichweite (einige km im PeV- Bereich Auch außerhalb des Detektors erzeugte m können nachgewiesen werden Effektives Detektionsvolumen À tatsächl. Volumen

39 Myon-Neutrinos Myon erzeugt kontinuierlich entlang seiner Bahn elektromagnetische Schauer v.a. durch Bremsstrahlung und Paarerzeugung Geladene Teilchen des Schauers und Myon erzeugen Cerenkov-Licht Richtung des Myons aus zeitlicher Verzögerung des Signals an den PMTs bestimmbar Es ist möglich von oben kommende (meist atmosphärische) und von unten ankommende Myonen zu unterscheiden Allerdings ist Energie der Myonen nur indirekt aus Schauer messbar

40 Das BAIKAL-Experiment Gebaut 1993 im Baikal-See 192 Photomultiplier an 8 Trossen Sammelte als Erster Neutrinolicht von atmosphärischen Neutrinos Nachweis der Machbarkeit Bild: BAIKAL Collaboration

41 Unterwasserexperimente Zur Zeit werden weitere Unterwasserexperimente aufgebaut bzw. geplant, die BAIKAL an Größe übertreffen ANTARES NEMO NESTOR

42 AMANDA Südpol 2000 m 1500 m AMANDA

43 Was sieht Amanda? viele Neutrino-Ereignisse – welchen Ursprungs? Grafik: AMANDA Collaboration

44 Fluss atmosphärischer Neutrinos Der gemessene Fluss entspricht den Modellen und steht im Einklang mit anderen Messungen Man sieht keine Abweichungen die auf nicht-atmosphärische Neutrinos hinweisen AMANDA Collaboration

45 Limits für Punktquellen Noch kein Hinweis auf einen statistisch signifikant erhöhten Fluss! Obere Limits (90% CL) für Neutrinofluss in cm -2 s -1 bei angenommenem E -2 -Spektrum

46 Die Suche nach GRBs Da GRBs kurze und lokalisierte Ereignisse sind, sucht man nach Neutrinoereignissen, die in zeitlicher und räumlicher Koinzidenz mit dem Ausbruch sind Untergrund kann sehr stark unterdrückt werden Bei den bisher untersuchten Ausbrüchen wurde kein signifikanter Anstieg gefunden Es kann eine obere Grenze für den Fluss angegeben werden:

47 Limit für Dunkle Materie Am Beispiel von Neutralinos Neutralinos könnten in der Erde oder der Sonne gravitationell gefangen sein und dort paarweise annihilieren Neutrinos wären ein mögliches Zerfallsprodukt Solche Neutrinos sollten senkrecht von unten oder aus Richtung der Sonne kommen Untergrund stark reduziert Es wurden keine Hinweise darauf gefunden

48 Warum noch größere Detektoren? Bisherige Größe reicht nicht aus, um die erwarteten Flüsse messen zu können Detektoren mit km³-Volumen sind notwendig! Diagramm: F. Halzen, Univ. Wisconsin

49 Zukunft: IceCube Detektor am geographischen Südpol mit 1 km³ Detektor- volumen 80 Stränge an denen jeweils 60 Photomultiplier (PMT) hängen, also insgesamt 4800 PMTs Luftschauer-Detektor IceTop direkt über IceCube 17 m Abstand zwischen PMTs, 125 m zwischen Strängen Wird bis 2010 aufgebaut

50 typische -Events E µ = 10 TeV Erzeugt ca. 90 Hits auf den PMTs E µ = 6 PeV Erzeugt ca Hits

51 Elektron-Neutrinos Durch einen CC-Prozess wird ein hochenergetisches e - erzeugt, welches einen elektromagnetischen Schauer erzeugt Schauer ist im Vergleich zum Abstand der PMTs relativ klein Quasi-Punktquelle von Cerenkov-Strahlung Reichweite dieser Strahlung ist ein gutes Maß für die Energie des ursprünglichen Neutrinos Radius beträgt 130m für E = 10 TeV in Eis und wächst um ca. 50m pro Dekade 10m

52 Typisches e -Event e mit E = 375 TeV

53 Tau-Neutrinos Erzeugung von in Beam Dumps ist gegenüber den anderen Neutrinos um Faktor 10 5 unterdrückt. Aufgrund der Neutrinooszillation erwartet man aber ein Verhältnis e : : = 1:1:1 sind die einzigen Neutrinos, die auch mit höchsten Energien die Erde durchqueren können, da nach einem NC- oder CC-Prozess wieder mit niedrigerer Energie entstehen verlieren bis in PeV-Bereich abgestuft Energie, danach ist die Erde für wieder durchsichtig

54 Tau-Neutrinos Prägnanteste Signatur ist der Double Bang Event. erzeugt durch CC-Prozess ein zerfällt Schauer

55 Typisches -Event PeV - (300m) decays

56 Unterwasserexperimente -> KM3NeT Geplant: Wissenschaftler von ANTARES, NESTOR und NEMO arbeiten zusammen an einem Unterwasserdetektor: KM3NeT Soll ebenfalls km³-Volumen besitzen Aufteilung der Hemisphäre unter IceCube (Südhalbkugel) und KM3NeT (Nordhalbkugel) => 4 -Abdeckung des Himmels

57 Erwartete Ergebnisse km 3 -Detektoren Baikal IceCube & km 3 in sea Amanda-B AMANDA-II & ANTARES AUGER NT-214 Diagramm: Learned & Mannheim; Spiering

58 Erwartete Ergebnisse km 3 -Detektoren Baikal IceCube & km 3 in sea Amanda-B AMANDA-II & ANTARES AUGER NT-214 Diagramm: Learned & Mannheim; Spiering Die Sensitivität der zukünftigen Neutrinodetektoren reicht aus, um die vorhergesagten Flüsse zu messen!

59 Bisherige und erwartete Ergebnisse Als Beispiel: Limits auf Neutralino-Annihilation aus Messung des Flusses vom Kern der Erde Diagramm: AMANDA Collaboration

60 Ausblick: Radiodetektion Durch hochenergetische Neutrinos ausgelöste Luftschauer emittieren kohärente Radio- Cerenkov-Strahlung Ist v.a. für Neutrinos mit Energien im EeV- Bereich geeignet Bisher z.B. im Rahmen von AMANDA durch RICE umgesetzt Schema: C. Spiering, DESY Zeuthen Der RICE-Detektor

61 Radiodetektion mit ANITA Ballonexperiment, das Radio- Cerenkov-Strahlung misst Kann durch seine Höhe (~35km) ein riesiges Gebiet überwachen Geeignet für Energien ~EeV und mehr!

62 Limits für ANITA ANITA hat enormes Potential!

63 Ausblick: Akustische Detektion Hochenergie-Teilchenschauer deponieren durch Ionisationsverluste Energie im Medium, welche in Hitze umgewandelt wird Schnelle Ausdehnung des Mediums Akustischer Puls; in Wasser oder Eis ca. 10µs lang Bei 20kHz ist Abklinglänge im km-Bereich Das Netz an Detektoren muss nicht so eng sein Riesige Detektionsvolumen könnten erreicht werden

64 Zusammenfassung Herkunft der höchstenergetischen kosmischen Strahlung ist noch nicht verstanden mit Neutrinomessungen könnten Bottom-Up- oder Top-Down- Modelle bestätigt oder ausgeschlossen und die Quellen identifiziert werden Ebenso erhält man Informationen über AGNs, GRBs, andere kosmische Beschleuniger Dark Matter weitere exotische Physik Mit bisherigen Detektoren ist es noch nicht möglich etwaige Punktquellen zu sehen Zukünftige Detektoren wie IceCube und KM3NeT sollten in der Lage sein die aus bottom-up und top-down-Modellen errechneten Flüsse zu messen

65 Quellen Artikel: F. Halzen: Lectures on High-Energy Neutrino Astronomy C. Spiering: High Energy Neutrino Astronmy: The Experimental Road F. Halzen: High-Energy Neutrino Astronomy: The Cosmic Ray Connection E. Waxman, J. Bahcall: High Energy neutrinos from astrophysical sources: An upper bound und Referenzen die großteils auf zu finden waren Webseiten: von ANTARES von IceCube von AMANDA der ICRC 2005 …


Herunterladen ppt "Neutrino Astronomie Christian Sailer Universität Karlsruhe."

Ähnliche Präsentationen


Google-Anzeigen