Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Kriemhilde Henle Geändert vor über 11 Jahren
1
Bewegung auf der Kreisbahn: Die Zentripetalbeschleunigung
2
Inhalt Zeitliche Ableitung eines Vektors Bahngeschwindigkeit
Zentripetalbeschleunigung
3
Vektor der Bahn-Geschwindigkeit
Geschwindigkeit mit konstantem Betrag, aber variabler Richtung Ihre zeitliche Ableitung, die Beschleunigung, ist ungleich Null
4
Vektoren für Fahrstrahl, Geschwindigkeit und Beschleunigung bei der Kreisbewegung mit konstanter Winkelgeschwindigkeit
5
Vektoren für Geschwindigkeit und Beschleunigung
Zur Ableitung eines Vektors nach der Zeit werden die Komponenten nach der Zeit abgeleitet Die Ableitung eines Vektors ist daher wieder ein Vektor Der Vektor der Geschwindigkeit ist die Ableitung des Fahrstrahls nach der Zeit Der Vektor der Beschleunigung ist die Ableitung des Vektors für die Geschwindigkeit nach der Zeit
6
Fahrstrahl bei Drehung um den Mittelpunkt
Nur der Winkel ändert sich, der Radius bleibt konstant ω=2π/T 1/s Kreisfrequenz, T 1 s Periode
7
Komponenten des Fahrstrahls bei konstanter Winkelgeschwindigkeit
8
Kreisbahn: Fahrstrahl-, Geschwindigkeits- und Beschleunigungsvektor
Einheit 1m Vektor des Fahrstrahls 1m/s Geschwindigkeitsvektor 1m/s2 Beschleunigungsvektor
9
Vektoren für Fahrstrahl, Geschwindigkeit und Beschleunigung
Die Zeichnung zeigt nur die Richtung der Vektoren, sie sind mit Betrag „1“ gezeichnet
10
Zentripetalbeschleunigung
Die Beschleunigung weist immer zum Zentrum
11
Richtung der Vektoren für Fahrstrahl, Geschwindigkeit und Beschleunigung
12
Vektoren für Fahrstrahl, Geschwindigkeit und Beschleunigung
Bei der Kreisbewegung bleibt bei Fahrstrahl, Geschwindigkeit und Zentripetalbeschleunigung der Betrag konstant während sich deren Richtung ändert
13
Beträge der Vektoren Wie berechnet man den Betrag eines Vektors? Skalarprodukt!
14
Berechnung des Betrags des Fahrstrahl-Vektors
1m Vektor des Fahrstrahls 1m2 Skalarprodukt des Vektors mit sich selbst Länge des Fahrstrahls
15
Beträge der Vektoren für Fahrstrahl, Geschwindigkeit und Beschleunigung auf der Kreisbahn
1 m Betrag des Vektors des Fahrstrahls 1 m/s Betrag des Geschwindigkeitsvektors 1 m /s2 Betrag des Beschleunigungsvektors Die Berechnung der Beträge für Geschwindigkeit und Beschleunigung erfolgt -analog zu der des Betrags des Fahrstrahls- aus den Skalarprodukten der Vektoren für Geschwindigkeit und Beschleunigung
16
Zusammenfassung Die Komponenten des Fahrstrahls sind Funktionen von Radius r und Winkel ω·t: x = r · cos ω·t [m] y = r · sin ω·t [m] Bahn Geschwindigkeit und Zentripetalbeschleunigung folgen bei erster und zweiter Ableitung der Komponenten nach der Zeit Beträge beider Vektoren: Bahngeschwindigkeit: v = ω · r [m/s] Zentripetalbeschleunigung: a = ω2 · r [m/s2]
17
Finis
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.