Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Uwe Niedermayer Institut für Theorie Elektromagnetischer Felder

Ähnliche Präsentationen


Präsentation zum Thema: "Uwe Niedermayer Institut für Theorie Elektromagnetischer Felder"—  Präsentation transkript:

1 Single Beam Collective Effects Impedances and Collective Effects for FCC-hh
Uwe Niedermayer Institut für Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Germany With a lot of input from: B.Salvant, X. Buffat, N.Nounet, D. Schulte, CERN T. Egenolf, F. Petrov, O. Boine-Frankenheim, TUD 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 1 24 April 2017 | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland

2 Contents As discussed in Washington: Beam pipe impedance
Other impedance sources Coupled bunch instability Transverse Mode Coupling Instability (TMCI) threshold Few new things and issues to be discussed: Which components? Details on the pipe… Plans, codes, outlines, timelines Collimators!!! Pipe aperture!!! 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 2

3 The beam pipe Design by R. Kersevan, CERN
So far only this design considered D. Schulte 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 3

4 Discretization GMSH (Geuzaine et al.) triangular mesh
Meshing the whole structure is required only for extremely low frequency! Otherwise: Surface Impedance Boundary Condition (SIBC) Thilo Egenolf, TU Darmstadt 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 4

5 2D Simulations in the Frequency Domain
BeamImpedance2D, PYTHON code using FEniCS finite element toolbox (U. Niedermayer et al., PRSTAB , 2015) Horizontal Vertical f=100Hz f=1MHz 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 5

6 Materials Beam Screen: Titanium Coating: Copper (80um or maybe higher)
Outer pipe, synchr. rad. reflector: Stainless Steel Conductivities k at room temperature T=293K -Titanium: k0= 1.8 MS/m -Copper: k0 = 60.0 MS/m -Stainless steel: k0 = 1.4 MS/m RRR= k(T=4K)/ k(293K) usually RRR ~ 300 Temperatures for the FCC pipe: -Scenario 1: K (roughly… k =100 k0 ) Scenario 2: K (roughly… k =10 k0) Magnetoresistance at 16T ? 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 6

7 Penetration depth Surface impedance for coated surface 6.4kHz Vacuum
Copper Titanium 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 7

8 Comparison with round pipe impedance  Horizontal
(1 meter pipe) Coating with Copper at 50K, k=6e9 S/m X2.0 An artifact, due to numerical cancelation at high gamma Skindepth=coating thickness 80um 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 8

9 Comparison with round pipe impedance  Vertical
(1 meter pipe) X1.4 An artifact, due to numerical cancelation at high gamma Skindepth=coating thickness 80 um 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 9

10 Pumping Holes, Collimators, …
Pumping holes with resonator model, ... fres=fcutoff ~6GHz Q=1 (Broadband) B. Salvant and X. Buffat, CERN S. Kurennoy, Part. Accel., 1995, Vol. 50, pp Collimators scaled from LHC, see also talk by M. Fiascaris (this morning) Collimators closed only at top energy! Maybe LHC-like carbon collimators are not the best choice… 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 10

11 Scenario Data M=13344 (25ns) rms bunch length 8 cm Nb=1.0e11 Qx=120.31
Qy=120.32 Chroma=0 E=3TeV Qs=0.0028 E=50TeV Qs=0.0078 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 11

12 Coupled bunch resistive instability
Most critical at injection due to less stiff beam! most unstable coupled-bunch mode at lowest frequency=2kHz Pipe only, solid Cu 50K E=3TeV Growth rate by factor 1.6 higher for 80 um coating Required thickness for “thick wall“ 150 um for 50K 450 um for 140K N. Mounet, EPFL Lausanne, formerly CERN 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 12

13 TMCI intensity threshold 3TeV
coherent tune shift of the mode Pipe +holes Pipe only B. Salvant and X. Buffat, CERN 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 13

14 TMCI intensity threshold 50TeV
More stiff beam, but higher impedance due to closed collimators Pipe + holes + collimators B. Salvant and X. Buffat, CERN 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 14

15 Conclusion FCC-hh already on the edge of stability only with resistive pipe 50 turns feedback possible but maybe insufficient 10 turns feedback possible? Kickers not yet considered Landau damping and Octupoles not yet considered Impedance should play an important role in collimator design 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 15

16 Holes and rips 3D simulations in the time domain by CST Particle Studio® Stabilization fins between beam pipe and reflector Vacuum pumping holes 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 16

17 Wakefield simulation of hole
Small effect, in the order of the numerical error! 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 17

18 Updates after Washington Meeting
Holes under investigation: resonator model is justified but probably smaller bandwidth First simulations show no effect of stabilizing rips… Input from Collimation-Group has to be followed  Proper design with few updates required. Material data: Vacuum group? We should avoid recalculating the impedance model for every screw that has changed! 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 18

19 Electron Cloud effects
Electron clouds lead to Tune shift / spread Synchronous phase shift Instabilities Pic. by F. Petrov TU-Darmstadt Difference to LHC Syncr. Rad. Asymmetry Small aperture 3D and 2D particle in cell codes for electron cloud simulations community supported beam tracking codes (e.g. PyOrbit) working on coupling the electron cloud simulations to the beam tracking including impedances. 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 19

20 Scientific Outlook Asymmetry Quadrupolar impedance
Combination of impedance and electron cloud Finally impedance check of all components in the ring? Nooo! Rather exclude some devices a priori and make a simplified model.  This is a CDR not a TDR! 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 20

21 Thank you for your attention!
The End Thank you for your attention! 24 April | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 21


Herunterladen ppt "Uwe Niedermayer Institut für Theorie Elektromagnetischer Felder"

Ähnliche Präsentationen


Google-Anzeigen