Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Mathematik in der Theorie der Petri Netze

Ähnliche Präsentationen


Präsentation zum Thema: "Mathematik in der Theorie der Petri Netze"—  Präsentation transkript:

1 Mathematik in der Theorie der Petri Netze
Joachim Wehler München 1999

2 Beispiel: Petri Netz p1 w-(t1,p1) p4 p2 t3 t1 t2 p5 w+(t1,p3) p3 2

3 Definition: Petri Netz
Ein Stellen/Transitions Netz ist ein Tupel N = ( T, P, w-, w+ ): T (Transitionen) und P (Stellen) disjunkte, nicht-leere (endliche) Mengen Abbildungen w-/+: T x P  N. Petri Netz (N, M): Netz N zusammen mit Anfangsmarkierung M: P N. 3

4 Inzidenzabbildung Inzidenzabbildung w := w+ - w: T x P  Z
induziert Z-lineare Abbildungen wT: CT(N)  CP(N, Z), wT(t):= w(t, p) wP := wT*: CP(N)  CT(N, Z) (dual). Notation: CT(N) := Z(T), CP(N) := Z(P), Ci(N, Z) := HomZ(Ci(N), Z), i = T, P. N Ì Z definiert Positivitätsbegriff. 4

5 Zustandsübergang Transition t ist aktiviert unter Markierung Mpre, wenn Mpre(p)  w-(t, p) für alle p  P (nicht-linear) Schalten einer aktivierten Transition bewirkt Markenfluß gemäß der Zustandsgleichung: Mpost = Mpre + wT(t) (linear) 5

6 Potentielle Erreichbarkeit
Notwendige Voraussetzung für die Erreichbarkeit einer Markierung Mpost in Petrinetz (N, Mpre) ist die Lösbarkeit der Zustandsgleichung über N: M := Mpost - Mpre = wT(),   CT(N)+. Satz. Lösbarkeit über Z ist äquivalent mit rank wT = rank (wT, M ) =: r < minor (wT, r) > = < minor ((wT, M), r >. 6

7 Moduln über Hauptidealringen
Beweis. Transformiere wT über Z auf Smith Normalform M( n x m, Z ) mit r = rang wT and ai | ai+1, i = 1,...,r-1. 7

8 Beispiel (2) Für Markierung Mpost := Mpre + p2* gilt
rank (w) = 3 = rank (w, M ) < minor (w, 3) > = < 2 >  < minor ((w, M ), 3) > = < 1 > Mpost = Mpre + w( t1 + (1/2)(t2 + t3) ) 8

9 Erhaltungssätze Modul der T-Flüsse, ZT(N, Z) := ker wT
Modul der P-Flüsse, ZP(N, Z) := ker wP Schaltfolgen zu T-Flüssen verändern die Markierung (den Zustand) des Petri Netzes nicht. Die mit P-Flüssen gewichteten Markierungen sind invariant bei jeder Schaltfolge. 9

10 Netzklassen S/T-Netze: Theorie der Moduln über Z,
Lineare Programmierung Gefärbte kommutative Netze: Ganze Z-Algebren, Gröbner Theorie 10

11 Beispiel „Die tafelnden Philosophen“
11

12 „Die tafelnden Philosophen“ (2)
nehmen links denkend zurücklegen rechts essend freie Gabeln hat sh 1 3 4 2 5 C := Zn , C(p) = B(t) = C konstant sh: Zn --> Zn, sh(x) := x+1 12

13 Definition: Gefärbtes Petri Netz
Gefärbtes Netz N = ( T, P, B, C, w-, w+): T (Transitionen), P (Stellen) B = (B(t))tT (Schaltmodi), C = (C(p))pP (Datentypen) Familien endlicher Mengen Familien w-= (w-(t, p))(t,p)TxP von Farbfunktionen w-(t, p)) HomN(B(t)N, C(p)N) (analog w+). Gefärbtes Petri Netz: Gefärbtes Netz mit Anfangsmarkierung. 13

14 Definition: Farbenalgebra
Sei N = ( T, P, C, w, w ) ein homogenes gefärbtes Netz mit Farbenmenge C. Die von allen Farbfunktionen erzeugte assoziative Algebra AZ := Z [ w( t, p), w( t, p) ](t,p)TxP  EndZ (CZ) heißt Farbenalgebra von N. Das Netz heißt kommutativ, wenn AZ kommutativ ist. 14

15 Kategorie AZ-Mod AZ-Modulstruktur von CZ AZ x CZ  CZ, (a, c)  a(c).
Inzidenzabbildung auf dem Niveau der Farbenalgebra wT,A: CT(N, AZ)  CP(N, AZ), t  w(t, -) Inzidenzabbildung auf dem Niveau des Farbenmoduls wT,C = wT,A  idC: CT(N, CZ)  CP(N, CZ). 15

16 „Die tafelnden Philosophen“ (3)
Farbenmodul CZ = spanZ < 0,1,...,n-1 > freier Z-Modul mit n Erzeugern Farbenalgebra AZ = Z [ sh ] Inzidenzabbildung 16

17 Berechnung von ker wT,A 1. Lifte Problem zu linearer Abbildung zwischen freien Moduln über Polynomringen. 2. Gröbner-Theorie über Polynomringen berechnet Kern. 17

18 Farbenalgebra als ganze Z-Algebra
Jede Farbenfunktion f := w+/-(t, p) Î AZ Ì EndZ(CZ) hat Minimalpolynom Pf Î Z [ t ]. Gauß: Z [ f Z [ t ] / < Pf >. Farbenalgebra ist ganz über Z: R / I, I = < h1,...,hp > Ì R := Z [ t1,...,tk ]. 18

19 ( ) Lift über Polynomring , R : H w ~ via ¾ ® Å =
Studiere Inzidenzmatrix mit Die Restklassen von erzeugen ker wT,A. ( ) , R : H w ~ via 2 1 n pn Å = 19

20 Gröbner Theorie Buchberger Algorithmus berechnet Erzeugende eines Ideals von Polynomen. Prinzip: Reduktion auf Kalkulation mit Monomen höchsten Grades. Gröbner Theorie ist Grundlage der Algorithmischen Kommutativen Algebra: Faktorisierung von Idealen, Berechnung von Kernen, Syzygien, Normalisierungen ... 20

21 Toolunterstützung Algorithmische Kommutative Algebra über Körpern:
Macaulay 2: Singular: 21

22 „Die tafelnden Philosophen“ (4)
ZP(N, AQ) = spanAQ ZT(N, AQ) = spanAQ 22

23 Kommutatives Netz: Q-Erreichbarkeit
wT,C = wT,A  idC: CT(N, CQ)  CP(N, CQ) Farbenalgebra AQ: AQ = i=1,..,k Ai mit lokalen Artin Algebren Ai, im reduzierten Fall Zahlkörper Ai. Farbenmodul CQ: CQ = i=1,..,k Ci mit Artin Moduln Ci, im reduzierten Fall endlich-dimensionale Vektorräume Ci über Zahlkörpern. 23

24 Fitting Ideale Satz. Sei A Dedekindring und f: An  Am
A-lineare Abbildung. Für y Am sind äquivalent: y  im f rang f = rang (f, y) =: r und < minor (f, r) > = < minor ((f, y), r) > Ì A. Beweis. Lokalisierungen eines Dedekindringes sind Hauptidealringe, Lokal-Global-Prinzip. 24

25 Kommutatives Netz: Z-Erreichbarkeit
wT,C = wT,A  idC: CT(N, CZ)  CP(N, CZ) Farbenalgebra AZ: Reduktion, Normalisierung in Produktform, Fitting Kriterium für wT,A über der Normalisierung. Farbenmodul CZ: Strukturtheorie torsionsfreier Moduln über Dedekindringen (Spaltungssatz mit invertierbarem Ideal). 25

26 „Die tafelnden Philosophen“ (5)
Farbenalgebra AZ = Z [ t ] / < tn - 1 > Kreisteilungspolynom zerfällt tn - 1= d|n d(t) Î Z [ t ] Beispiel mit n = 6 Philosophen: 1(t) = t - 1, 2(t) = t + 1, 3(t) = t2 + t +1, 6(t) = t2 - t +1 26

27 Spec Z [ t ] / < t6 - 1 > Z Q [ t ] Q 6 [ t ] 1 [ t ] 2 [ t ]
F2 [ t ] F5 [ t ] F3 [ t ] 2 3 5 ... 27

28 Algorithmen Gröbner Basis: Buchberger Algorithmus für Ideal I Ì R := Z [ t1,...,tk ]. Faktorisierung: Gianni-Trager-Zacharias Algorithmus für Primärzerlegung I = I1  ...  In Normalisierung: Grauert-Remmert-de Jong Algorithmus für die Normalisierung Z [t1,...,tm] / J von R / rad ( I ). 28

29 Literatur Reisig, Wolfgang, Rozenberg, Grzegorz (Eds.): Lectures on Petri nets I, II. Lecture Notes in Computer Science 1491, Springer, Berlin et al. 1998 Jensen, Kurt: Coloured Petri Nets. 3 Vols., Springer, Berlin et al., 1992, 1995, 1997 Vasconcelos, Wolmer: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer, Berlin et al. 1998 Buchberger, Bruno; Winkler, Franz (Eds.): Gröbner Bases and Applications. London Mathematical Society Lecture Note Series 251. Cambridge University Press 1998 29


Herunterladen ppt "Mathematik in der Theorie der Petri Netze"

Ähnliche Präsentationen


Google-Anzeigen