Präsentation herunterladen
1
Didaktik der Geometrie (1)
Vorlesung im Sommersemester 2004 Prof. Dr. Kristina Reiss Lehrstuhl für Didaktik der Mathematik Universität Augsburg
2
Didaktik der Geometrie Inhaltsübersicht
Bedeutung der Geometrie und Ziele des Geometrieunterrichts Lehrplaninhalte der Sekundarstufe I (Klassen 5 bis 10) Lernvoraussetzungen aus der Grundschule Aspekte der Geometrie im Unterricht Lehre vom Anschauungsraum Axiomatisierbare Theorie Übungsfeld für Problemlösen Begriffsbildung im Geometrieunterricht Beweisen, Begründen und Argumentieren
3
Kongruenzgeometrische und abbildungsgeometrische Verfahren
Flächeninhalte und Volumina Kongruenz Ähnlichkeit Die Satzgruppe des Pythagoras Der Kreis und seine Eigenschaften Aspekte der räumlichen Geometrie Aspekte der Darstellenden Geometrie
4
Ziele des Geometrieunterrichts
Geometrie kann eine Hilfe zum besseren Verständnis der Umwelt sein. Geometrie ist ein wichtiges Kulturgut. Geometrie ist besonders geeignet, Problemlösen zu initiieren. Geometrie kann logisches Denken und kohärentes Argumentieren fördern. Geometrische Begriffe und Methoden sind prototypisch für die Mathematik.
5
(1) Geometrie als Hilfe zum besseren Verständnis der Umwelt
Geometrische Phänomene in der Architektur Geometrische Phänomene in der Kunst Geometrie und Technik Geometrie und Natur
6
Geometrie und Architektur
7
Geometrie und Kunst
8
Geometrie und Technik Überlegen Sie sich Beispiele!
9
Geometrie und Natur
10
(2) Geometrie als 5000 Jahre altes Kulturgut
Exemplarische Aspekte: Flächen- und Volumenberechnungen; Pythagoreischer Lehrsatz, Berechnung von Quadratwurzeln (Mesopotamien) Axiomatische Methode in der Geometrie (Euklid) Nichteuklidische Geometrie Literatur: C.J. Scriba und P. Schreiber (2001) Jahre Geometrie. Geschichte, Kulturen, Menschen. Heidelberg: Springer.
11
(3) Geometrie und Problemlösen
Wo liegen alle Punkte, die von zwei gegebenen Punkten A und B gleichen Abstand haben? Wie muss man die Startblöcke beim 400 m-Lauf positionieren, damit alle Läufer genau 400 m laufen?
12
Wie verbindet man 9 Punkte mit 4 Geraden?
13
Alle genannten Probleme erfordern geometrisches Wissen.
Dabei haben Geometrieaufgaben in der Schule häufiger als Algebraaufgaben den Charakter „echter“ Probleme, bei denen zwischen gegebener Bedingung und dem Ziel der Aufgabe mehrere Schritte liegen, die nicht durch einfache Algorithmen beschrieben werden.
14
(4) Logisches Denken und kohärentes Argumentieren
Betrachte die folgende Figur!
15
Betrachte die folgende Figur!
16
Zu einer Geometrieaufgabe gehört die Konstruktionsbeschreibung
Zu einer Geometrieaufgabe gehört die Konstruktionsbeschreibung. Auf diese Weise werden Arbeitsschritte nicht nur implizit, sondern oftmals auch explizit begründet. Explizites Argumentieren verbessert das mathematische Verständnis.
17
(5) Geometrische Begriffe und Methoden
Ein Parallelogramm ist ein Viereck, dessen gegenüberliegende Seiten auf auf paarweise parallelen Geraden liegen. Sind die Seiten eines Parallelogramms gleich lang?
18
Beispiel: Der Begriff „senkrecht“
Wie kann man entsprechend den Begriff „parallel“ enaktiv erarbeiten?
19
Mathematisches Arbeiten ist geprägt durch den Umgang mit
Axiomen Definitionen Sätzen und ihre Beweisen Die Elementargeometrie bietet Möglichkeiten, dieses Arbeiten auch im Rahmen des Schulunterrichts zu behandeln.
20
Aspekte der Geometrie nach Holland
Geometrie als Lehre vom Anschauungsraum Geometrie als Beispiel einer deduktiven Theorie Geometrie als Übungsfeld für Problemlösen Geometrie als Vorrat mathematischer Strukturen Literatur: G. Holland (19962; 2001). Geometrie in der Sekundarstufe. Heidelberg: Spektrum
21
Geometrie als Lehre vom Anschauungsraum
Geometrieunterricht soll hinführen zum Erwerb grundlegender geometrischer Figurenbegriffe, Abbildungsbegriffe und Größenbegriffe, sowie deren Anwendung in Umweltsituationen; zur einsichtigen Kenntnis solcher geometrischer Zusammenhänge, die für die weitere Ausformung des Anschauungsraums und für Anwendungen von Bedeutung sind; zur Fertigkeit, ebene und räumliche Konfigurationen zeichnerisch darzustellen.
22
Geometrie als Beispiel einer deduktiven Theorie
Geometrie ist gekennzeichnet durch das logische Beziehungsgefüge zwischen Begriffen und Sätzen; Ziel ist es, alle Begriffe und Sätze der Geome-trie auf einer nicht weiter reduzierbaren Basis von Grundbegriffen und Axiomen aufzubauen; Geometrie als deduktive Theorie fordert die Ablösung vom Anschauungsraum; Beweisen bedeutet Deduktion eines Satzes aus bereits bewiesenen Sätzen, Grund-begriffen und Axiomen.
23
Geometrie als Übungsfeld für Problemlösen
Die Geometrie bietet eine Fülle kleinerer Probleme. Holland ordnet sie den drei folgenden Bereichen zu: Berechnungsprobleme Beweisprobleme Konstruktionsprobleme
24
Geometrie als Vorrat mathematischer Strukturen
Idee: Geometrische Veranschaulichung von algebraischen und topologischen Strukturen Additive Gruppe der reellen Zahlen / die Zahlengerade; Translationen der Ebene / zweidimensionaler reeller Vektorraum Deckabbildungen eines regelmäßigen n-Ecks / Diedergruppe der Ordnung 2n Zusammenhänge / Graphen
25
Bedeutung der Aspekte für den Geometrieunterricht (Holland, 19962; 2001)
Geometrie als Lehre vom Anschauungsraum ist für alle Schülerinnen und Schüler der Sekundarstufe I von Bedeutung Geometrie als Beispiel einer deduktiven Theorie ist im Wesentlichen für das Gymnasium, eher geringer für die Realschule relevant. Geometrie als Übungsfeld für Problemlösen hat für alle Schülerinnen und Schüler eine zentrale Bedeutung. Geometrie als Vorrat mathematischer Strukturen bleibt allenfalls dem Gymnasium vorbehalten.
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.