Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Irma Welde Geändert vor über 11 Jahren
1
Hauptseminar Automaten und Formale Sprachen
Algorithmen der Bioinformatik Exact String Matching Michael Opfermann
2
Exact String Matching Problemstellung
Das Auffinden aller Vertreter eines Musters P innerhalb eines Textes T T : TGACGTACGAATG P : GTACG Möglichst zeit- und speicherplatzeffizient
3
Definitionen String S Substring S[k..l] Prefix Suffix Muster P Text T
Sei ein Wort, oder eine Kette, aus Buchstaben des Alphabetes X Substring S[k..l] Sei ein stetiger Teilausschnitt eines Strings S, beginnend an einer Position k und endend an der Position l Prefix Sei ein Substring S[1..k] des Strings S Suffix Sei ein Substring S[k..|S|] des Strings S Muster P Das Muster sei der zu suchende String der Länge m Text T Sei der nach Vorkommen des Musters zu durchsuchende String der Länge n
4
Naiver Algorithmus GTAGTCCTAG
Buchstabenweiser Vergleich von Text und Muster Bei Fehler verschieben des Musters um 1 Position nach Rechts relative zum Text GTAGTCCTAG GTCCT _GTCCT Worst Case Laufzeit : O (m*n) Verbesserungen der Laufzeit durch Preprocessing zum Berechnen größerer Verschiebungen als im naiven Algorithmus Entweder am Text oder am Muster
5
Preprocessing Preprocessing am Muster P
Right-most Position der Buchstaben des Musters Bezeichnet das Vorkommen am weitesten rechts eines Buchstabens im Muster Definition Für jeden Buchstaben x im Alphabet, sei R(x) die right-most Position von x in P R(x) = 0 wenn x nicht in P existiert GTAAGT : R(G) = 5 R(T) = 6 R(C) = 0 R(A) = 4
6
Preprocessing Preprocessing am Muster Definitionen
Zi(S) (einfach Zi, falls S fest bestimmt) Gegeben sei ein String S und eine Position 1 < i <=|S| in diesem String. Dann sei Zi(S) die Länge des längsten Substrings in S, der in i beginnt und einen Prefix von S entspricht Z-Box Für jede Position 1 < i <=|S| in S, wenn Zi(s) > 0, sei die Z-Box das Intervall [i, i+ Zi(s) -1] ri ri sei der right-most Endpunkt aller Z-Boxen, die links von oder an der Position i beginnen. li li sei der am weitesten links liegende Startpunkt einer Z-Box, die in ri endet
7
Preprocessing am Muster
Der Z Algorithmus (Teil 1) Zur Bestimmung der Zi(S) r = 0, l = 0 Für 1 < k <= |S| Wenn k > r dann Vergleiche die Substrings S[k…m] und S[1…m-k+1] miteinander, bis ein ungleiches Paar auftritt. Zk ist gleich der Länge der Übereinstimmung. Wenn Zk > 0, dann r = k + Zk -1 und l = k
8
Preprocessing am Muster
Der Z Algorithmus (Teil 2) k <= r k‘ = k – l +1 b = r – k + 1 1. Fall Zk‘(S) < b Zk = Zk‘ 2. Fall Zk‘(s) >= b Vergleiche Substrings von S startend an Positionen (b + 1) und (r + 1) miteinander bis ein Fehler auftritt (an Position q) Zk = q – k, r = q – 1, l = k
9
Preprocessing am Muster
Der Z Algorithmus (Teil 3) Ziel Berechnen von Zi(S) Werten durch benutzen der Zj(S) Werte für j < i Beispiel k = 121, r120 = 130, l120 = 100 Z22(S) = 3 Dann folgt, Z121(S) ist ebenfalls 3
10
Boyer Moore Algorithmus
Bestandteile Right-to-Left-Scan Eigentliche Vergleichsoperation Bad Character Rule Aufruf bei Auftreten eines ungleichen Vergleichspaares zur Berechung der Verschiebung Good Suffix Rule Aufruf bei Auftreten eines ungleichen Vergleichspaares, das nicht das erste Vergleichspaar ist, oder dem Auffinden eines Vorkommens des Musters im Text
11
Boyer Moore Algorithmus
Right to Left Scan Buchstabenweiser Vergleich wie im naiven Algorithmus Allerdings nicht von Links nach Rechts, sondern von Rechts nach Links GTCGTAAATGTGA GTAATAA Laufzeit unverändert zu Naiven Algorithmus Verschieben des Musters anhand der beiden Verschieberegeln Bad Character Rule Good Suffix Rule
12
Boyer Moore Algorithmus
Bad Character Rule Sei x ein Buchstabe aus T und y ein Buchstabe aus P Sei k die aktuelle Vergleichsposition in T und i die Position in P Wenn ein Vergleich von x und y ergibt x <> y, dann verschiebe P um Max[1, i-R(T(k))] nach rechts GTCAGT…. GTCAGT….. GTAC GTTC GTAC GTTC
13
Boyer Moore Algorithmus
Laufzeiten und Speicherbedarf g sei die Größe des Alphabets, m sei die Länge von P, n sei die Länge von T Vorverarbeitung von P Speicherbedarf: O(g) = O(1) Laufzeit O(g*m) = O(m) Anwenden der Bad Character Rule Right to Left Scan : O(m) Bestimmung der Verschiebeposition : O(g) Worst Case Laufzeit : O(n*(g+m)) + O(m) = O(n*m) Laufzeit bei großem Alphabet und kurzem P geht gegen O(n/m)
14
Boyer Moore Algorithmus
Good Suffix Rule Arbeitsweise Fall 1 Ein Substring t von T stimmt mit einem Suffix von P überein Dann finde die right-most Kopie t‘ von t in P, so dass t‘ ist kein Suffix von P und das Zeichen links von t‘ ist ungleich dem Zeichen links von t Verschiebe P nach rechts, so dass t‘ unter t liegt Gibt es kein solches t‘ dann suche einen Suffix von t, der mit einem Prefix von P übereinstimmt und verschiebe P, so das dieser Suffix über diesem Prefix liegt Gibt es keinen solchen Suffix, dann verschiebe P um m Positionen nach rechts
15
Boyer Moore Algorithmus
Good Suffix Rule Arbeitsweise Fall 2 eine Kopie K von P wurde in T gefunden Melde Position der Kopie Suche einen echten Prefix t von P, so dass t = Suffix t‘ von K Verschiebe P nach rechts, so dass t genau über t‘ liegt Gibt es kein solches t dann verschiebe P um m Positionen nach rechts
16
Boyer Moore Algorithmus
Good Suffix Rule Vorverarbeitung von P Definitionen Für jede Position i in P sei L‘(i) die am weitesten rechts liegende Position für die gilt P[i..n] entspricht einem Suffix von P[1..L‘(i)] und der Buchstabe vor diesem Suffix is ungleich P(i-1). L‘(i) = 0 wenn keine solche Position existiert Für P sei Nj(P) die Länge des längsten Suffix des Substrings P[1..j], der zudem ein Suffix von P ist Pr sei Umkehrung von P
17
Good Suffix Rule Preprocessing
Zi(s) ist die Länge des längsten Substrings von S, der in i beginnt und einen Prefix von S ist Offensichtlich ist N die Umkehrung von Z D.h. Nj(P) = Zn-j+1(Pr) Da Z O(m) ist auch N O(m) L‘(i) = max(j | Nj(P) = |P[i..n]| = (n-i+1))
18
Good Suffix Rule Preprocessing
Z-Based Boyer Moore for i := 1to n do L‘(i) = 0 for j := 1 to n-1 do begin i := n – Nj(P) + 1 L‘(i) := j end;
19
Good Suffix Rule Preprocessing
Definition l‘(i) sei gleich dem größten j <= |P[i..n]|, so das Nj(P) = j Die Good Suffix Rule Tritt beim Vergleich ein Fehler an Position i -1 auf und L‘(i) >0 dann verschiebe P um m - L‘(i) Positionen nach rechts Ist L‘(i) = 0, dann verschiebe P um m – l‘(i) Positionen nach rechts Wurde ein Vorkommen von P in T gefunden, dann verschiebe P um m – l‘(2) Positionen nach rechts
20
Boyer Moore Algorithmus
Berechne L‘(i), l‘(i) und R(x) k:=n Solange k <=n i:= n h:= k Solange i > 0 und P(i) = T(h) i:= i -1; h:= h-1 If i = 0 Berichte gefundenes Vorkommen von P k:= k + n – l‘(2) Else Verschiebe P um das Maximum der durch die Good Suffix bzw. Bad Character Rule berechnete Verschiebung
21
Knuth Morris Pratt Algorithmus
Definitionen spi‘(P) sei die Länge des Längsten echten Suffix von P[1..i] der mit einem Prefix von P übereinstimmt und außerdem gilt P(i+1) <> P(spi‘+1) Verschieberegel Verglichen wird von links nach rechts wie im naiven Algorithmus Tritt ein Fehler an der Position i+1 von P auf, so verschiebe P um i- spi‘ Positionen nach rechts Wird ein Vorkommen von P in T gefunden, so verschiebe P um n – spn‘ Positionen nach rechts
22
Knuth Morris Pratt Algorithmus
Vorteile der Verschieberegel 1. oft Verschiebungen größer 1 2. nach einer Verschiebung stimmt der Prefix P[1..spi‘] mit T überein und der Vergleich braucht erst ab der Position P[spi‘+1] fortgeführt zu werden
23
Knuth Morris Pratt Algorithmus
Preprocessing Z Based Knuth Morris Pratt Für i:= 1 bis n spi‘ = 0 Für j:= n abwärts bis 2 i:= j + Zj -1 spi‘ := Zj Fehlerfunktion F‘(i) = spi-1‘ +1 (wobei sp0‘=0)
24
Knuth Morris Pratt Algorithmus
Preprocessing F‘(k) c:= 1; p:= 1 Solang c+(m-p) <= n Solange P(p) = T(c) und p<=m p++, c++ Wenn p=n+1 dann Berichte Vorkommen von P in T startend an Position c-m Wenn p=1 dann c++ p:= F‘(p)
25
Knuth Morris Pratt Algorithmus
Realtime Erweiterung Z based real time matching Für i:= 1 bis n Spi,x‘ = 0 für jedes x aus dem Alphabet Für j:= n abwärts bis 2 i:= j + Zj -1 x:= P(Zj+1) Spi,x‘ := Zj
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.