Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Berend Ehlert Geändert vor über 10 Jahren
1
1 Computergestützte Verifikation 04.6.2002
2
2 Teil II Infinite State Systems
3
3 Prinzipskizze Inf. State Modell Formel ABSTRAKTION Fin. State Modell Fin. State Model Checker + Gegenbeispiel - Analyse Abstraktions- verfeinerung - Infinite State Model Checker
4
4 weiterer Verlauf: 5. Verifikation von Real-Time Systemen 6. Abstraktion 7. Abstraktionsverfeinerung 8. – k. Verifikation spezieller Systemklassen Software, hybride Systeme, Security-Protokolle, Algorithmen,.....
5
5 5. Real Time Systeme 5.1 Timed Automata 5.2 TCTL 5.3 Abstraktion durch Regionen 5.4 Abstraktion durch Zonen
6
6 5.1 Timed Automata System mit diskreten Zustandsvariablen + Uhren Uhren haben nichtnegative reelle Werte System hat diskrete Zustandsübergänge + Zeitverlauf Uhren kann man auf 0 zurücksetzen oder ablesen, sie laufen alle synchron Ablesen = diskrete Übergänge werden von Uhrenstellung beeinflußt
7
7 Timed Automata ausein hell kaputt klick Uhren c1, c2 Uhrenmenge C lineare Constraints: ci k oder ci - cj k (k in Nat, in {=,,,, } können boolesch verknüpft sein) c1>3 c1 3 c2>10000 Invarianten (gleiche Syntax) c2 20000 Resets = Uhren, die auf 0 gesetzt werden c1 c2
8
8 Semantik von Timed Automata = richtiges Transitionssystem Zustand = [d,v] d – diskreter Zustand v: C R + Zustandsübergänge: a)diskreter Übergang [d,v] [d,v] d d im Automat, v erfüllt Constraint an d d, 0, falls c in Resetmenge von d d v(c) = v(c), sonst v erfüllt Invariante in d b) Zeitverlauf [d,v] [d,v] es gibt ein t 0: v(c) = v(c) + t für alle c Jedes v+t (0 < t t) erfüllt Invariante in d
9
9 Pfade in Timed Automata Problem: Zeitkonvergente Pfade Zeno-Verhalten d1 d2 d3 d4.... 1/21/41/8 1/16 Def: Nur die zeitdivergenten Pfade bilden die Semantik von Timed Automata (Annahme analog zu Fairness)
10
10 5.2 TCTL X-Operator wird gestrichen D – Menge von Formeluhren Constraints über D werden atomare Aussagen c in Beispiel: c in EF (c 5 ) = Es ist möglich, daß in spätestens 5 s ab jetzt gilt = EF 5
11
11 5.3 Regionen Ziel: Ausnutzen, daß beim Ablesen nur mit ganzzahligen Werten verglichen wird aber Vorsicht! Einfache Diskretisierung der Zeitachse tuts nicht: c1 c2 c1=1 c2<1 k:= k + 1 k := k - 1 EG k < 2 gilt in keiner diskreten Zeitachse gilt in reeller Zeitachse: 0 0.9 0.99 0.999 0.9999
12
12 Regionen Region = Menge von Uhrenstellungen, die für alle Constraints die gleichen Werte liefern Äquivalenzrelation ci k ci - cj k Wann genau sind zwei Uhrenstellungen v,v äquivalent? 1.ganzzahlige Anteile aller Uhren gleich, oder größer als größte in Automat und Formel erwähnte Konstante 2.v(c) ganzzahlig gdw. v(c) ganzzahlig 3.frac(v(c1)) < frac(v(c2)) gdw. frac(v(c1)) < frac(v(c2))
13
13 geometrische Veranschaulichung c2 c1 0 1 2 1 2 3
14
14 Datenstruktur für Regionen ganzzahlige Teile + {0, c3, c7} < {c25,c13} <...< {c54,c8,c9,c10} c2 c1 {0,c1}<{c2} {0,c2}<{c1}{0,c1,c2} {0}<{c1}<{c2} {0}<{c2}<{c1} {0}<{c1,c2}
15
15 Regionengraph Zustand = [diskreter Zustand, Uhrenregion] a) diskreter Übergang: Constraintauswertung lt. irgendeinem Element der Region, Reset liefert neue Region: allgemein: {0,c3,c17}<{c2,c9,c54}<...< {c18,c6,c7,c8}
16
16 Regionengraph b) Zeitverlauf {0} <......... < {c2,c42,c200} {0,c2,c42,200} <........ {0,c2,c42,c200} <....... {0} < {c2,c42,c200} <.......
17
17 Eigenschaften des Regionengraphs Satz: Wenn [d,v] [d1,v1] und v in selber Region wie v, so ex. v1: [d,v] [d1,v1] und v1 in selber Region wie v1 (Gleiche Situation wie bei Symmetrie!) Ein Timed Automaton erfüllt eine TCTL-Eigenschaft gdw. sein Regionengraph die zugehörige CTL-Eigenschaft erfüllt
18
18 Problem des Regionengraphs Es gibt viele Regionen: Sei #C = n und K max. Zeitkonstante in Formel und Automat. #Reg: O( n! x 2 n-1 x K n ) symbolisches Model Checking könnte helfen, boolesche Kodierung der Regionendatenstruktur (und der Übergänge) vorausgesetzt. wenig Erfahrung dazu, weil die meistenTools Zonen verwenden
19
19 Übung 1 Konstruiere den Regionengraph für folgendes System (Anfang: k = 0) ! Identifiziere in diesem Graph einen Pfad, der EG k 1 bezeugt! k=0k=1k=2 c2:=0 c1 1 c2 < 1 c1 1 c2 < 1 c1 1 c2 < 1 c1 = 1 c1:=0 c1 = 1 c1:=0 c2:=0
20
20 Übung 2 Wie groß ist die exakte Zahl von Regionen mit Uhrenstellungen, deren ganzzahliger Teil gleich Null ist, in einem System mit genau 3 Uhren? (Hilfe: Bei zwei Uhren wäre die Antwort 6.)
21
21 Übung 3 Formuliere in TCTL die Eigenschaft: Auf jedem Pfad gelten a und b von jetzt an mindestens 6 Zeiteinheiten lang gemeinsam, und b gilt noch 3 Zeiteinheiten lang ab dem Moment, wo a das erste Mal verletzt ist.
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.