Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

PowerPoint-Folien zur 10. Vorlesung „Bionik I“

Ähnliche Präsentationen


Präsentation zum Thema: "PowerPoint-Folien zur 10. Vorlesung „Bionik I“"—  Präsentation transkript:

1 PowerPoint-Folien zur 10. Vorlesung „Bionik I“
Ingo Rechenberg PowerPoint-Folien zur 10. Vorlesung „Bionik I“ Berg- und Talbahnen in der Natur Bolzenflug, Schwimmspringen und Achterbahnsegeln

2 Merkwürdiger Flug kleiner Vögel

3 Bolzenflug eines Buntspechts

4 Analyse des Bolzenflugs

5 Kräfte an einem Modell-Vogel = Flügel-Auftriebsbeiwert
= Profil-Widerstandsbeiwert mit Siehe 8. Vorlesung ! Flügelstreckung = Rumpf-Widerstandsbeiwert Antrieb (kann ein Propeller-, ein Raketen-, ein Schwingenantrieb sein)

6 v - für mittleren Horizontalflug Zeitliches Mittel Steigphase
W W a - v 1 a m Zeitliches Mittel a T ( - 1 a ) T T Steigphase Sturzphase Mittel

7 Minimum Liefert die unsinnige Lösung:
Vorteil der Zusammenfassung: Falls sich eine Größe nur schwer verändern lässt, kann die andere Größe optimal eingestellt werden. Liefert die unsinnige Lösung: Das in der Luft still stehende Flugzeug (wegen der unendlich großen Fläche möglich) hat den geringsten Widerstand. Betrachtung der „halben“ Aufgabe: v sei vorgegeben. Wir differenzieren also nicht nach v.

8 Minimum 5,8 0,05 Abhebegeschwindigkeit eines Vogels Nicht frei !
Vorteil des Zusammenfassens Notwendige Flügelfläche, um überhaupt in die Luft zu kommen ! Vernünftige Vorgabe von v Abhebegeschwindigkeit eines Vogels 5,8 0,05 für Es ist eine Reisegeschwindigkeit vorgegeben. Aber das Flugobjekt muss noch bei der halben Geschwindigkeit zum Fliegen gebracht werden. Reisegeschwindigkeit Abhebegeschwindigkeit

9 Erklärung in Wikipedia:
Der Wellen- oder Bolzenflug, intermittierender Flug ist die Art, wie viele kleine Vögel wie Schwalben, Feldlerchen und Mauerschwalben fliegen: Mit einem „Triller“ von Flügelschlägen heben sie sich nach oben, um während der folgenden Schlagpause wieder auf einer Wurfparabel abzusinken. Für diese Form des Vogelflugs gab Sir Michael James Lighthill eine einfache Erklärung: Immer dann, wenn der Reibungswiderstand an den gestreckten Flügeln größer wird als der auftriebsabhängige induzierte Widerstand, kann - bei vorgegebener Flugstrecke - Energie gespart werden, indem der Vogel seine Flügel zeitweise anlegt. Diesen Vorteil haben Vögel freilich nur dann, wenn ihre Fluggeschwindigkeit deutlich höher ist, als die Geschwindigkeit mit dem geringsten Luftwiderstand (die ihrerseits wieder etwas über der optimalen Geschwindigkeit mit dem geringstmöglichen Leistungsaufwand liegt). Intermittierend können also nur kleine Vögel fliegen, die über relativ große Leistungsreserven verfügen.

10 Ein vielleicht bessere Erklärung:
Ein Flugzeugflügel ist dann optimal ausgelegt (Fliegen mit minimalem Gleitwinkel cw /ca), wenn der induzierte Widerstand cwi (Widerstand durch Randwirbel) gleich dem Profilwiderstand cwp (Reibungswiderstand + Formwiderstand des Tragflügels) ist (siehe Ableitung unten). Das führt bei einer Auslegung des Flugzeugs für einen schnellen Reiseflug (v gegeben) dazu, dass die Flügelfläche relativ klein wird. Für den Start bei moderater Geschwindigkeit (Startgeschwindigkeit deutlich kleiner als die Reisegeschwindigkeit) muss die Tragflügelfläche aber groß sein. Der Ausweg: Eine beim Start große Tragflügelfläche wird beim Übergang zum schnellen Reiseflug verkleinert. Das geschieht in der menschlichen Flugtechnik durch Einfahren von beweglichen Flügelelementen (geometrische Flächenverkleinerung) und bei kleinen Vögeln durch periodisches Anklappen der Flügel an den Rumpfkörper (zeitliche Flächenverkleinerung). Bei vorgegebenem v und m folgt daraus F

11 ? Minimum Die genauere Betrachtung: Liefert die unsinnige Lösung:
Das in der Luft still stehende Flugzeug (wegen der unendlich großen Fläche möglich) hat den geringsten Widerstand. ? Warum muss der Vogel überhaupt fliegen, d. h. seinen Ort wechseln ?

12 Zur Evolution der Mobilität in der Natur
Es beginnt mit der passiven Mobilität: Pflanzen schicken ihre Samen durch abenteuerliche Konstrukte auf die Reise. Erster Vorteil: Am fer-neren Standort ist der Boden fruchtbarer. Zweiter Vorteil: Das Erbgut wird weitläufiger durchmischt. "Wenn der Prophet nicht zum Berge kommt, dann muss der Berg eben zum Propheten kommen„ - Das ist der Ausgangspunkt für die Entwick-lung der aktiven Mobilität. Tiere müssen unter Energieaufwand Nah-rung suchen. Die „gebratenen Tauben fliegen ihnen nicht in den Mund“. Modell

13 Benzin-Hamstern auf der Zapfstraße
Ein Modell für den Zweck der Mobilität von Lebewesen Ein Autofahrer fährt eine wundersame Straße entlang. Alle 10 km kann er kostenlos 1 ℓ Benzin tanken. Bei welcher Geschwindigkeit hamstert er das meiste Benzin pro Stunde ? Benzinverbrauch bei 50 km / h: ℓ /100 km Benzinverbrauch bei 100 km / h: 5 ℓ /100 km Benzinverbrauch bei 200 km / h: 10 ℓ /100 km

14 Analoge biologische Gewinnfunktion
Gewinn [ℓ /h] = ( Tanken [ℓ /km] – Verbrauch [ℓ /km] )  Geschwindigkeit [km/h] Auf den Kilometer bezogen Benzinverbrauch bei 50 km / h: ℓ /100 km Benzinverbrauch bei 100 km / h: 5 ℓ /100 km Benzinverbrauch bei 200 km / h: 10 ℓ /100 km G = (0,1 – 0,02) · 50 = 4 ℓ /h G = (0,1 – 0,05) · 100 = 5 ℓ /h G = (0,1 – 0,10) · 200 = 0 ℓ /h Analoge biologische Gewinnfunktion Gewinn [kJ/h] = ( Nahrung [kJ /km] – Flugarbeit [kJ /km] )  Geschwindigkeit [km/h] Siehe:

15 Schwimmspringen in der Natur
Der Delfinstil Schwimmspringen in der Natur

16 Spiel oder Energieminimierung ?

17 Steinwurf Über- und Unterwasserbahn eines Delfins

18 a Annahme: Mit Annahme Kreisbahn !
Der Delfin muss in der Unterwasserphase den Eintauchwinkel a in den „Spiegelwert“ (- a ) umdrehen. Annahme: Mit

19 Weggewinn des Schwimm-Sprung-Stils der Delfine
w = Wasserweg l = Luftweg

20 Delfine im Delfinstil

21 Foto: Ingo Rechenberg Pinguin im Delfinstil

22 Der Flug des Albatros

23 Albatros bei der unteren Kehrtwende
Foto: Ingo Rechenberg Albatros bei der unteren Kehrtwende

24 Thermischer Aufwind Aufwind am Hang

25 Albatros im dynamischen Segelflug
Scherprofil des Windes Albatros im dynamischen Segelflug

26 Das Eisschollen-Bob-Modell
Eisscholle schiebt sich mit w auf die untere Scholle v Zum Flug des Albatros v+ w v Äußerer Betrachter schwarz Innerer Betrachter grün v+ w v+2w Das Eisschollen-Bob-Modell v+2w Siehe Wikipedia: „Dynamischer Segelflug“

27 Modell zum dynamischen Segelflug
v v 2w w Vogel macht Kehrtwende im Laderaum eines rückwärts fahrenden Lasters

28 Zwei Denkmodelle zum dynamischen Segelflug
Jo-Jo-Spiel Kugelschleudern Zwei Denkmodelle zum dynamischen Segelflug

29 Dynamischer Segelflug von Flugmodellen
Drachenwindkraftwerk Sehr entfernte Ähnlichkeit mit dem Albatrosflug

30 Mikro Flug Vehikel MAV (Micro Air Vehicle)

31 … An diesen Bienen fiel zunächst die Größe auf.
Ein Roman aus dem Jahr 1957 … An diesen Bienen fiel zunächst die Größe auf. … Sie hatten etwa den Umfang einer Walnuss, die noch in der grünen Schale steckt. … Zapparoni, dieser Teufelskerl, hatte wieder einmal der Natur ins Handwerk gepfuscht… Wahrscheinlich saß er dort behaglich bei seinen Büchern und verfolgte zuweilen auf dem Bildschirm, was ihm die „Glasbiene“ sendete.

32 Mikrodrohne des Instituts
Rekonstruktion von Jüngers Glasbiene Schriftsteller und Insektenforscher Ernst Jünger (1895 – 1998) Mikrodrohne des Instituts

33 Landung eines Mikro Air Vehikels

34 Flug eines Mikro Air Vehikels im Institut

35 MAV Vorführung

36 Klein, kleiner, am kleinsten
Aus dem Internet

37 Künstliche Libelle von Erich von Holst (1940)
Vorbild Libelle Gu = Gummimotor R = Fadenrolle W = Wickelplatte K = Kurbel P = Pleuelstange Spannweite 53 cm Gewicht 12 g

38 Mikro-Flugobjekte

39 Die offene Frage Flatterbewegung oder Rotative Bewegung
MAV (US Studenten) Die offene Frage Rotative Bewegung MAV (Firma Epson) oder In der Biologie wäre eine Gewebeverbindung zwischen Rad und Achse notwendig

40 Flattern als Ersatz der Rotation
Beginn Abschlag Beginn Aufschlag

41 MAV Libelle

42 5 cm Bienenelfe (Mellisuga helenae) 2 Gramm MAV Vorbild Vogel

43 Abstrahiertes Bild der Flatterbewegung

44 Abstrahiertes Bild der Flatterbewegung

45 Abstrahiertes Bild der Flatterbewegung

46 Abstrahiertes Bild der Flatterbewegung

47 Schwebeflug

48 Flügelbahn einer schwebenden Fliege
Experiment Michael Dickinson

49 Strömungsphysik (Reynoldszahl)
Insektenflug Größe Bionik Nanodrohnen Airbus 380 Andere Strömungsphysik andere Lösungen ! Bionik! Libelle Federflügler 0,25 mm Strömungsphysik (Reynoldszahl)

50 MAV-Erkundung in den Dünen

51 Der „Smart Bird“ der Firma FESTO

52 Intelligent Organic Aicraft
NASA-Studie: Intelligent Organic Aicraft Biomechanical Aerial Technology System (BATS) Das BATS Programm ist ein NASA Langley Forschungsprogramm, an dem das Morpheus Lab als Partner beteiligt ist. Die Bemühungen zielen auf die Entwicklung des ersten Fluggeräts ab, das ähnlich biologischer Organismen vollständig aus verteilten Systemen konstruiert ist. Der organische Ornithopter wird aus integrierten und verteilten Schichten aktiver Materialien (d. h. Muskeln), verteilten sensorischen Schichten (d. h. Nerven) und einem verteilten Energiespeicher und Energieversorgungssystem [Anm.: MEMS Mikro-Turbinen, -Generatoren und -Pumpen] bestehen. Das wird ähnlich wie bei biologischen Organismen sein, die vollintegrierte verteilte Funktionssysteme besitzen. Das Fluggerät wird autonom fliegen, was Sinnesempfindungen und intelligente Algorithmen zur Steuerung erfordert.

53 Quadrocopter Antriebsschema eine Quadrocopters

54 Mikro-Drohne DJI Phantom 2 Vision Quadrocopter
Zunehmende Anwendung durch Profi- und Hobbi-Fotografen

55 Zukünftige Einsatzmöglichkeiten von Mikro-Drohnen (MAV = Micro Air Vehicle)
Verfolgung chemischer Konzentrationsgradienten in Innenräumen (Sprengstoffschnüffler, Lokalisierung von Gaslecks) Aeromagnetische und aeroelektrische Feldmessungen zur Lagerstätten-Exploration und zur archäologischen Prospektion durch scannende MAVs bzw. einen MAV-Schwarm Ebenes Abscannen von Landstrichen zur Detektion von Minen mit autonom geregelten tiefstfliegenden MAVs in lateraler Schwarmordnung Folgen des Duftgradienten einer geschädigten Flora (z. B. Grünblattduft der Kartoffelpflanze bei Kartoffelkäferbefall) und singuläre Schädlings-Elimination durch MAVs Detektion von Lawinen-Verschütteten durch ein auf neuronale Aktivität ansprechendes hochsen-sibles adaptives Antennenarray mit verteilten MAVs (MAV-Schwarm) Detektion kleinster Geräuschquellen (z. B. Klopfgeräusche) durch ein von einem MAV-Schwarm gebildetes adaptives Mikrofonarray (akustische Kamera) Transport und Absetzen von e-Grains durch MAVs in Sondereinsätzen, z. B. bei der Terroristen-bekämpfung Optische Inspektion exotischer Areale (z. B. Abwasserkanäle) und undefinierbarer Gegenstände durch MAVs mit Videokamera im Normal- und Infrarotbereich Autonomes Durchfliegen von Waldregionen mit Kamera-MAVs in lateraler Schwarmordnung auf der polizeilichen Suche nach Verbrechensopfern

56 Zurück vom Hin und Her zu Auf und Ab
Evolution Springen: Fortbewegung mit kleinerem Energieverbrauch ? Delfin Känguru Frosch Heuschrecke Saharaspinne

57 Das Auf und Ab der rollenden Saharaspinne Cebrennus rechenbergi
Höhe Strecke

58 Ende


Herunterladen ppt "PowerPoint-Folien zur 10. Vorlesung „Bionik I“"

Ähnliche Präsentationen


Google-Anzeigen