Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2.

Ähnliche Präsentationen


Präsentation zum Thema: "Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2."—  Präsentation transkript:

1 Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2 = 28 Stunden Labor

2 Stoffplan: 1. Einleitung. Elektrische Messung nichtelektrischer Größen
Stoffplan: 1. Einleitung. Elektrische Messung nichtelektrischer Größen. 2. Meßfühler. Übersicht über passive und aktive Aufnehmer-Prinzipien. Messchaltungen. 3. Sensoren für geometrische Meßgrößen und mechanische Beanspruchung, Temperaturmessung 5. Intelligente Sensorsysteme 6. Aktoren Typische Sensoren und Aktoren der Robotik Feldbussysteme

3 Aktuatoren: .Bauelemente für die Signalverabeitung mit pneumatischer Hilfsenergie analoge pneumatische Signalverarbeitung; pneumatische Schaltelemente elektrisch-pneumatische Umformer .Elektronische Steuerungen .Bauelemente für die Signalverabeitung mit hydraulischer Hilfsenergie Hydraulische Signal- und Leistungverstärker; elektrohydraulische Umformer; Stellglieder mit Drehbewegung; .Stelleinrichtungen Stelleinrichtungen für Stoffströme Stellglieder mit Hubbewegung; Stellglieder mit Drehbewegung . Stellantriebe Stellantriebe mit elektrischer Hilfsenergie Stellantriebe mit pneumatischer Hilfsenergie Stellantriebe mit hydraulischer Hilfsenergie Schaltgeräte: elektromechanische-, elektromagnetische Relais

4 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie - Servomotoren
Servomotors are available as AC or DC motors. Today a class of motors is designed for applications that may use a servo amplifier or a variable-frequency controller, which means that a motor may be used in a servo system in one application, and used in a variable-frequency drive in another application. Some companies also call any closed-loop system that does not use a stepper motor a servo system, so it is possible for a simple AC induction motor that is connected to a velocity controller to be called a servomotor. Some changes that must be made to any motor that is designed as a servomotor includes the ability to operate at a range of speeds without overheating, the ability to operate at zero speed and retain sufficient torque to hold a load in position, and the ability to operate at very low speeds for long periods of time without overheating. One of the most usable types of motors in servo systems is the permanent magnet (PM) type motor. The voltage for the field winding of the permanent magnet type motor can be AC voltage or DC voltage. This type of PM motor also has an encoder or resolver built into the motor housing. This ensures that the device will accurately indicate the position or velocity of the motor shaft. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

5 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie - Servomotoren
Typical PM servomotors. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

6 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless Servomotoren
The brushless servomotor is designed to operate without brushes. This means that the commutation that the brushes provided must now be provided electronically. Electronic commutation is provided by switching transistors on and off at appropriate times. The main point about the brushless servomo-tor is that it can be powered by either ac voltage or dc voltage. Next figure shows three types of voltage waveforms that can be used to power the brushless servomotor. Figure a shows a trapezoidal voltage input and a square wave current input. Figure b shows a sinusoidal waveform for the input voltage and a square wave current waveform. Figure c shows a sinusoidal input waveform and a sinusoidal current waveform. The sinusoidal input and sinusoidal current waveform are the most popular voltage supplies for the brushless servomotor. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

7 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless Servomotoren
(a) Trapezoidal input voltage and square wave current waveforms. (b) Sinusoidal input voltage and sinusoidal voltage and square wave output voltage waveforms. (c) Sinusoidal input voltage and sinusoidal current waveforms. This has become the most popular type of brushless servomotor control. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

8 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Brushless Servomotoren
(a) Transistors connected to the three windings of the brushless servomotor. (b) Waveforms of the three separate voltages that are used to power the three motor windings. (c) Waveforms of the signals used to control the transistor sequence that provides the waveforms for the previous diagram, (d) Waveform of the overall back EMF. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

9 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Wortschatz: Schrittmotor Gleichstrommotor, Rotor (drehbares Motorteil mit der Welle) Drehwinkel, Reluktanz- und Permanentmagnetmotor, Hybridschrittmotor Anzahl der Pole Auflösung High-Torque Motoren (=hohes Drehmoment) Kraftdichte überlastet Positionsrückmeldung (Encoder, Drehgeber) Synchronmotor Servomotoren Linearmotoren. Schrittmotoren mit Getriebe. [nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]

10 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Prinzip der Schrittmotoren Schrittmotoren arbeiten völlig anders als Gleichstrommotoren. Das ist schon daran zu erkennen, dass diese keine zwei, sondern meist 4, 6 oder 8 Anschlüsse (bipolare oder unipolare Motoren) besitzen. m den Motor nun in Bewegung zu bringen, muss an den Spulen eine Spannung angelegt werden. Legt man die Mittelanzapfung auf Masse, so hat man also noch 4 Anschlüsse. Legt man nun an zwei dieser Anschlüsse die Spannung an, bewegt sich der Motor - allerdings nur einen winzigen kaum sichtbaren Schritt. Wie groß ein Schritt ist, hängt vom jeweiligen Motor ab. Bei den meisten Motoren beträgt der Schrittwinkel 1,8 Grad. Nachdem der Motor nun einen Schritt gemacht hat, muss die Spannung an einer anderen Kombination von Anschlüssen eingeschaltet werden. Es gibt somit 4 Kombinationen, wobei immer zwei Anschlüsse an die Spannung und zwei andere auf 0 V gelegt werden. Dies ist die sogenannte unipolare Ansteuerung. Wechselt man ständig diese verschiedenen Anschlussbelegungen, so würde sich der Motor mit jeder Änderung einen Schritt drehen. [nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]

11 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Stepping motors can be viewed as electric motors without commutators. Typically, all windings in the motor are part of the stator, and the rotor is either a permanent magnet or, in the case of variable reluctance motors, a toothed block of some magnetically soft material. All of the commutation must be handled externally by the motor controller, and typically, the motors and controllers are designed so that the motor may be held in any fixed position as well as being rotated one way or the other. Most steppers, as they are also known, can be stepped at audio frequencies, allowing them to spin quite quickly, and with an appropriate controller, they may be started and stopped "on a dime" at controlled orientations. For some applications, there is a choice between using servomotors and stepping motors. Both types of motors offer similar opportunities for precise positioning, but they differ in a number of ways. Servomotors require analog feedback control systems of some type. Typically, this involves a potentiometer to provide feedback about the rotor position, and some mix of circuitry to drive a current through the motor inversely proportional to the difference between the desired position and the current position. Stepping motors can be used in simple open-loop control systems; these are generally adequate for systems that operate at low accelerations with static loads, but closed loop control may be essential for high accelerations, particularly if they involve variable loads. If a stepper in an open-loop control system is overtorqued, all knowledge of rotor position is lost and the system must be reinitialized; servomotors are not subject to this problem. [nach Douglas W. Jones, THE UNIVERSITY OF IOWA Department of Computer Science ]

12 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Stepping motors come in two varieties, permanent magnet and variable reluctance (there are also hybrid motors, which are indistinguishable from permanent magnet motors from the controller's point of view). Lacking a label on the motor, you can generally tell the two apart by feel when no power is applied. Permanent magnet motors tend to "cog" as you twist the rotor with your fingers, while variable reluctance motors almost spin freely (although they may cog slightly because of residual magnetization in the rotor). You can also distinguish between the two varieties with an ohmmeter. Variable reluctance motors usually have three (sometimes four) windings, with a common return, while permanent magnet motors usually have two independent windings, with or without center taps. Center-tapped windings are used in unipolar permanent magnet motors. Stepping motors come in a wide range of angular resolution. The coarsest motors typically turn 90 degrees per step, while high resolution permanent magnet motors are commonly able to handle 1.8 or even 0.72 degrees per step. With an appropriate controller, most permanent magnet and hybrid motors can be run in half-steps, and some controllers can handle smaller fractional steps or microsteps. For both permanent magnet and variable reluctance stepping motors, if just one winding of the motor is energised, the rotor (under no load) will snap to a fixed angle and then hold that angle until the torque exceeds the holding torque of the motor, at which point, the rotor will turn, trying to hold at each successive equilibrium point. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

13 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Variable Reluctance Motors If your motor has three windings, typically connected with one terminal common to all windings, it is most likely a variable reluctance stepping motor. In use, the common wire typically goes to the positive supply and the windings are energized in sequence. The cross section shown in Figure 1.1 is of 30 degree per step variable reluctance motor. The rotor in this motor has 4 teeth and the stator has 6 poles, with each winding wrapped around two opposite poles. With winding number 1 energised, the rotor teeth marked X are attracted to this winding's poles. If the current through winding 1 is turned off and winding 2 is turned on, the rotor will rotate 30 degrees clockwise so that the poles marked Y line up with the poles marked 2. To rotate this motor continuously, we just apply power to the 3 windings in sequence. Assuming positive logic, where a 1 means turning on the current through a motor winding, the following control sequence will spin the motor illustrated in Figure 1.1 clockwise 24 steps or 2 revolutions: Winding Winding Winding time ---> [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

14 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Unipolar Motors Unipolar stepping motors, both Permanent magnet and hybrid stepping motors with 5 or 6 wires are usually wired with a center tap on each of two windings. In use, the center taps of the windings are typically wired to the positive supply, and the two ends of each winding are alternately grounded to reverse the direction of the field provided by that winding. Motor winding number 1 is distributed between the top and bottom stator pole, while motor winding number 2 is distributed between the left and right motor poles. The rotor is a permanent magnet with 6 poles, 3 south and 3 north, arranged around its circumference. For higher angular resolutions, the rotor must have proportionally more poles. As shown in the figure, the current flowing from the center tap of winding 1 to terminal a causes the top stator pole to be a north pole while the bottom stator pole is a south pole. This attracts the rotor into the position shown. If the power to winding 1 is removed and winding 2 is energised, the rotor will turn 30 degrees, or one step. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

15 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Unipolar Motors To rotate the motor continuously, we just apply power to the two windings in sequence. Assuming positive logic, where a 1 means turning on the current through a motor winding, the following two control sequences will spin the motor clockwise 24 steps or 2 revolutions: Winding 1a Winding 1b Winding 2a Winding 2b time ---> Winding 1a Winding 1b Winding 2a Winding 2b Note that the two halves of each winding are never energized at the same time. Both sequences shown above will rotate a permanent magnet one step at a time. The top sequence only powers one winding at a time, as illustrated in the figure above; thus, it uses less power. The bottom sequence involves powering two windings at a time and generally produces a torque about 1.4 times greater than the top sequence while using twice as much power. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

16 Aktuatoren: Stellantriebe mit elektrischer Hilfsenergie – Schrittmotoren
Bipolar Motors Bipolar permanent magnet and hybrid motors are constructed with exactly the same mechanism as is used on unipolar motors, but the two windings are wired more simply, with no center taps. Thus, the motor itself is simpler but the drive circuitry needed to reverse the polarity of each pair of motor poles is more complex. The drive circuitry for such a motor requires an H-bridge control circuit for each winding; - Briefly, an H-bridge allows the polarity of the power applied to each end of each winding to be controlled independently. The control sequences for single stepping such a motor are shown below, using + and - symbols to indicate the polarity of the power applied to each motor terminal: Terminal 1a Terminal 1b Terminal 2a Terminal 2b time ---> Note that these sequences are identical to those for a unipolar permanent magnet motor, at an abstract level, and that above the level of the H-bridge power switching electronics, the control systems for the two types of motor can be identical. [nach Thomas E. Kissell: Industrial Electronics, Prentice Hall 2000]

17 Aktuatoren für Roboten
Grippers A gripper is a device which enables the holding of an object to be manipulated (a “hand” which enables holding, tightening, handling and releasing of an object).A gripper is just one component of an automated system. A gripper can be attached to a robot or it can be part of a fixed automation system. [nach Applied Robotics :

18 Aktuatoren für Roboten
Arbeitsweise: Compressed air is supplied to the cylinder of the gripper body forcing the piston up and down, which through a mechanical linkage, forces the gripper jaws open and closed. Parallel Gripper: The gripper jaws move in a parallel motion in relation to the gripper body.  [nach Applied Robotics :

19 Aktuatoren für Roboten
Arbeitsweise: Angular Gripper: The gripper jaws are opened and closed around a central pivot point, moving in a sweeping or arcing motion. [nach Applied Robotics :

20 Aktuatoren für Roboten
Arbeitsweise: Toggle Gripper: The pivot point jaw movement acts as an over-center toggle lock, providing a high grip force to weight ratio. This mechanism will remain locked even if air pressure is lost. [nach Applied Robotics :

21 Aktuatoren für Roboten
Arbeitsweise: Internal vs External Gripping Grippers are used in two different holding options, External and Internal. The option used is determined by the geometry of the part to be grasped, the process to be performed, orientation of the parts to be grasped and the physical space available. [nach Applied Robotics :

22 Aktuatoren für Roboten
Arbeitsweise: Tooling/Finger design considerations: Custom gripper tooling/fingers are needed for each application. Fingers are used to actually make contact with the part to be grasped.   [nach Applied Robotics :

23 Aktuatoren für Roboten
Rotary Actuators The rotary actuator is a device use to alternate the rotated position of an object. Just like the human wrist the actuator enables the rotation of an object, except that rotary actuators are available in a wide variety of models with different — Sizes, Torques, Rotation angles.The energy for the rotation is delivered by pneumatic pressure. The rotary actuator converts the air pressure from a linear motion to a rotating motion. [nach Applied Robotics :

24 Aktuatoren für Roboten
Rotary Actuators Arbeitsweise: The rotary actuator converts the air pressure from a linear motion to a rotating motion. This is done by a rack and pinion. Air pressure is supplied pushing the piston in a linear motion, attached to the piston is a straight set of gear teeth called a "rack". The rack is pushed in a linear motion as the piston moves. The gear teeth of the rack are meshed with the circular gear teeth of a "pinion" forcing the pinion to rotate. The pinion can be rotated back into the original position by supplying air pressure to the opposite side of the air cylinder pushing the rack back in the other direction.The pinion is connected to a shaft that protrudes from the body of the rotary actuator.  This shaft can be connected to various tools or grippers. [nach Applied Robotics :

25 A simple thermocouple measurement - short history [credits National Instruments]

26 Soft Motion Technology [credits National Instruments]

27 Remote Laboratories [credits National Instruments]


Herunterladen ppt "Sensoren und Akt[uat]oren Vorlesungen und Labor Ingenieurswesen-Abteilung - FILS (3-ten Semester) Studienplan: 14 x 1 = 14 Stunden Vorlesung 14 x2."

Ähnliche Präsentationen


Google-Anzeigen