Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Neue Kohlekraftwerke und Klimawandel Absehbare Fehlinvestitionen

Ähnliche Präsentationen


Präsentation zum Thema: "Neue Kohlekraftwerke und Klimawandel Absehbare Fehlinvestitionen"—  Präsentation transkript:

1 Neue Kohlekraftwerke und Klimawandel Absehbare Fehlinvestitionen
Prof. Dr. Olav Hohmeyer Universität Flensburg Vice Chair WG III IPCC

2 Struktur des Vortrags Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)‏ Der Einfluss des Menschen auf das Klima Auswirkungen des Klimawandels Handlungsmöglichkeiten Die verbleibende Zeit zu handeln Unsere Handlungsoptionen Die Kosten der Optionen Energie – Kern des Problem und Schlüssel zum Erfolg Kohlekraftwerke in Brunsbüttel oder die programmierte Pleite Schlussfolgerungen

3 Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)‏
Der Einfluss des Menschen auf das Klima

4 Der Treibhauseffekt Quelle: Houghton 2001

5 Menschlicher Einfluss auf das Klima
Konzentrationen der THGs CO2, CH4 und N2O : weit höher als vor der Industrialisierung seit 1750 aufgrund menschlicher Aktivitäten sehr stark gestiegen Nur geringe Veränderungen vor der Industrialisierung Quelle: IPCC 2007a (WG I, SPM, S. 3)‏ 5

6 Beschleunigter globaler Temperaturanstieg
Period Rate 0.026 0.018 Years /decade Wärmste 12 Jahre seit 1850: 1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000 Quelle: Pachauri und Jallow,

7 Menschlicher Einfluss auf den Klimawandel
Quelle: IPCC 2007a (WG I TS S.62)

8 Bedeutung der verschiedenen Faktoren
Quelle: IPCC 2007a (WG I, SPM S.4)‏

9 Zunahme der Treibhausgasemissionen von 1970 bis 2004 um 70%
Quelle: IPCC 2007 (TS WG III, S. 4)‏

10 Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)
Auswirkungen des Klimawandels

11 Der Zeitfaktor im Klimasystem
Quelle: IPCC TAR 2001, S. 89

12 Temperaturanstiegsszenarien bis 2100 (AR4)‏
Quelle: IPCC 2007a (WG I, SPM S.14)‏

13 Temperaturanstieg bis 2100 nach Szenario A2 und B1 (AR4)‏
Erwärmung über Grönland : B1: 1 – 3°C (Süd- bis Nordspitze)‏ A2: 2,5 – 7,5°C (‚Weiter so!‘)‏ Kritischer Wert 3°C (TAR)‏ Eisvolumen für 7m Meeresspiegelanstieg A2 B1 Quelle: IPCC 2007a (WG I, SPM S.15)‏

14 Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)‏
Handlungsmöglichkeiten: Die verbleibende Zeit zu handeln

15 Welche Entwicklungspfade vermeiden die schlimmsten Klimafolgen?
(Pre industrial temperature to average about -0.4 °C)‏ Quelle: IPCC 2007 (TS WG III, S. 19)‏

16 Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)‏
Handlungsmöglichkeiten: Unsere Handlungsoptionen

17 Wirtschaftliches Vermeidungspotential in 2030 in Gt CO2eq/a
Quelle: IPCC 2007 (SPM WG III, S. 11)‏ Quelle: IPCC 2007 (SPM WG III, S. 11)‏ (Present (2004) annual emissions about 45 Gt CO2eq/a)‏

18 Verschiedene Vermeidungsoptionen bis 2030 und 2100 (650 / 490-550ppmv CO2-eq)
Quelle: IPCC 2007 (SPM WG III, S. 25)‏

19 Neuste Ergebnisse zum anthropogenen Treibhauseffekt (IPCC 2007)‏
Handlungsmöglichkeiten: Die Kosten der Optionen

20 Vermeidungskosten des Klimawandels in 2030
Quelle: IPCC 2007 (SPM WG III, p. 15)‏

21 Veranschaulichung der Vermeidungskosten bis 2030
BSP ohne Vermeidung BSP 80% 77% BSP bei Vermeidung für ppmv CO2eq Zeit 2007 ~1 Jahr 2030 Quelle: nach Metz 2007

22 Energie – Kern des Klimaproblems
und Schlüssel zur Lösung

23 Fossile Energieträger – der Kern des Problems (Beispiel Deutschland)
Treibhausgasemissionen in D 2000 Anteile GHGs in D 2000: CO2: 87% CH4: 6% N2O: 6% HFCS/PFCS: 1% SF6: 0,25% EL/FW Gesamtemissionen im Jahr 2000 990 Mt CO2 Eq. CO2 zu 97% aus Energieumwandlung! Fossile Energieträger sind 85% des Problems Ind. CO2 Quelle: BMU 2003, S. 32 und UBA 2002, S. 31

24 Neue Kohlekraftwerke ohne CCS haben viel zu hohe CO2 Emissionen
Gesamtemissionen 2000: ca. 990 Mt CO2 Eq./a Elektrizitätserzeugung: ca. 330 Mt CO2 Eq./a Notwendige Reduktion bis 2050 (-80%) auf: ca. 200 Mt CO2 Eq./a Verbleibender Anteil Elektrizitätserzeugung: 66 Mt CO2 Eq./a Emissionen Brunsbüttel (3x 800 MW Kohle): 13,5 Mt CO2 Eq./a Anteil Brunsbüttel an der Stromproduktion 2050: 2 – 3% Anteil Brunsbüttel an den zulässigen Emissionen: 20% Emissionen aller heute geplanten 28 Kohleblöcke: ca. 120 Mt CO2 Eq./a Anteil an der Stromproduktion 2050: – 25% Anteil an den zulässigen Emissionen 2050: – 200%

25 Energieversorgung ohne CO2 Emissionen Vier Optionen
Kernenergie Saubere fossile Brennstoffnutzung Effizienzsteigerung und Einsparung Regenerative Energiequellen Solarenergie Windenergie Biomasse Wasserkraft Geothermie

26 Kernenergie ist keine nachhaltige Lösung!
Kernenergie birgt erhebliche Risiken von Großunfällen (z. B. Harrisburg, Tschernobyl)‏ Die Langzeitsicherheit von Endlagern radioaktiver Abfälle kann auch nach langjähriger Forschung nicht gewährleistet werden Massiver Kernenergieeinsatz birgt erhebliche Proliferationsrisiken (Atomwaffenverbreitung)‏ Kernenergie hat große Akzeptanzprobleme in der Gesellschaft Kernenergie ist keine nachhaltige Lösung!

27 ‚Clean‘ Fossil Fuels Probleme:
Abtrennung des CO2 vor oder nach der Verbrennung Generatorgas (H2 und konzentriertes CO2)‏ Reinsauerstoffverbrennung Katalytische Abtrennung von CO2 aus dem Rauchgas Langfristige (?) Lagerung von CO2 ohne Kontakt zur Atmosphäre Alte Öl- und Gaslagerstätten – viel zu geringe Kapazität Saline Tiefenaquifere – begrenzte Kapazität Einbringung in Ozeane – unklare Risiken Probleme: Dauerhaftigkeit Konkurrenz zu Biomasse und Speicherung

28 Effizienzsteigerung Energieeffizienzsteigerungen sind auf allen Stufen der Nutzungsketten möglich Je nach Bereich kann der spezifische Primärenergiebedarf um bis zu 90% gesenkt werden Im Schnitt ist eine Reduzierung des spezifischen Energiebedarfs um 35-50% möglich Es verbleibt aber immer ein substantieller Energiebedarf ! – Nur Teillösung!

29 Regenerative Energiequellen
sind relativ teuer zu nutzen Sonnen-, Wind- und Wellenenergie schwanken im Angebot bei hohem Marktanteil Speicherung notwendig stehen noch Milliarden Jahre zur Verfügung emittieren kein zusätzliches CO2 sind relativ umweltfreundlich die jährliche Sonneneinstrahlung beträgt das fache des Weltenergieverbrauchs (3,5 Mill. EJ/a)‏

30 Das Angebot erneuerbarer Energien
Nach: BWE,2004 1/15000 der eingestrahlten Solarenergie kann unseren gesamten Energiebedarf decken!

31 Klimaverträgliche Energieversorgung
Zwei Säulen einer langfristig klimaverträglichen Energieversorgung: Rationelle Energienutzung Regenerative Energiequellen Reichen aus, um den Energiebedarf der Menschheit für die nächsten 5 Milliarden Jahre zu decken! Energie wird dabei langfristig ca. 30% teurer sein als heute

32 Kohlekraftwerke in Brunsbüttel oder die programmierte Pleite

33 Elektrizitätserzeugung heute: Stromnachfrage und Einspeisung

34 Stromeinspeisung aus Windenergie in 2007
Quelle: ISET 2007

35 Fluktuierend Einspeisung und Kraftwerksdispatch

36 Eigenschaften thermischer Kraftwerke
Quelle: Grimm, 2007, S. 9n

37 Eignungsgebiete für Windenergie in der deutschen Nordsee
Allein die bisher in der Nordsee geplanten Nutzungsflächen bieten Platz für mehr als 50 GW zur Produktion von mehr als 200 TWh Strom/a Quelle: Hohmeyer 2003, S. 19

38 Szenario für den Ausbau der Windenergie in der deutschen Nordsee (50 GW gesamt)
Windenergie aus der Nordsee: Bis zu 50 GW Leistung Quelle: Hohmeyer 2003, S. 21

39 Ausbau Windenergie in der Nordsee
11,3 GW bis 2011 Östlicher Teil (SH) geht zwischen Büsum und Brunsbüttel ins Netze Quelle: E.ON Netz 2007

40 Netzengpässe und Betriebsstunden
Offshore Windenergie wird ca Volllaststunden (Äquivalente) erreichen Allein für die Windenergie aus der Nordsee sind schon Netzengpässe absehbar (5 – 6 GW Kapazität) Die vorhanden Kapazitäten zwischen Brunsbüttel und HH werden relativ schnell durch Windenergie ausgelastet Konventionelle Kraftwerke werden am Standort nur bis Stunden laufen können Kohlekraftwerke sind dann nicht mehr wettbewerbsfähig Kohlekraftwerke sind am Standort pleite, bevor sie ans Netz gehen Ausschnitt Netzkarte VDN, 2000

41 Konsequenzen für den Ausbau des Standortes Brunsbüttel
Kohle und Kernkraftwerke sind am Standort ökonomisch nicht zu betreiben, sobald der Windstrom aus der Nordsee kommt (ab 2011) Gaskraftwerke und Druckluftspeicher können die Windenergie gut ergänzen Mittelfristig ist eine Kopplung mit norwegischen Pumpspeicherkraftwerken über eine HGÜ-Verbindung sinnvoll Betreiber und Planer von Kohle- und Kernkraftwerken haben gute Gründe die Windenergienutzung in der Nordsee so lange wie möglich zu verhindern

42 Schlussfolgerungen

43 Schlussfolgerungen Die Zeit drängt, denn der Klimawandel läuft erheblich schneller als wir bisher gedacht haben! Kohlekraftwerke sind Bremsklötze für die Lösung des Klimaproblems Am Standort Brunsbüttel machen Kohlekraftwerke nicht einmal betriebswirtschaftlich Sinn Es ist im Interesse der potentiellen Betreiber keine Kohlekraftwerke (sondern Gaskraftwerke) zu bauen Ein Engagement im Bereich der Windenergie und der Speicherung ist sehr viel zukunftsweisender und hilft das Klimaproblem zu lösen Eine erfolgreiche Bürgerinitiative wird die Investoren vor großen Verlusten bewahren! (Sie sollten sich bei Ihnen bedanken!)

44 Vielen Dank für Ihre Aufmerksamkeit!


Herunterladen ppt "Neue Kohlekraftwerke und Klimawandel Absehbare Fehlinvestitionen"

Ähnliche Präsentationen


Google-Anzeigen