Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

MIKROELEKTRONIK, VIEEAB00

Ähnliche Präsentationen


Präsentation zum Thema: "MIKROELEKTRONIK, VIEEAB00"—  Präsentation transkript:

1 MIKROELEKTRONIK, VIEEAB00
IC Entwurf: Entwurfsregeln, Vorwegentwurf bzw. -Herstellung Design Flow

2 Elemente des Mikroelektronik-CAD
2

3 Elemente des Mikroelektronik-CAD
3

4 Was auf der Abbildung nicht zu sehen ist
Hierarchie Mehrere Iterationen Verwirklichung (St Zelle, gate array etc.) 4

5 Entwurf Aufteilung von größeren Einheiten Simulation
TOP DOWN UP BOTTOM Aufteilung von größeren Einheiten Simulation Verwirklichung des reellen Schaltkreises Abstraktionsebenen : Verhaltensmodell (behavioral, zum Teil nicht synthesefähig) Register-Transfer-Level (RTL-Modell, synthesefähig) Gatelevel-Modell (Netzliste) 5

6 Gajski-Kuhn Y Diagramm
6

7 Spiralförmig nur im Märchen …
7

8 Jetzt vereinfacht und richtig beschriftet
Optimierung Physikalische Bausteinsimulation Technologie-Simulation Komponentenparameter Entwurfsregeln Verhaltensbeschreibung Spezifikation in VHDL oder in Verilog Systemsimulation Entwurf auf Systemebene Strukturelle Beschreibung Schemen-Editor Logiksimulation Synthese Logikentwurf Layout Generation Layoutbeschreibung Layout Editor Schaltkreissimulation Timing Parameter Entwurf auf Transistorebene Abstraktionsebene: Repräsentation: Simulator: IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

9 Elemente der Entwurfssysteme
Schaltkreiseingabe HDL (Verilog, VHDL) Verhaltensbeschreibung (Verilog, VHDL, SystemC) Strukturelle Beschreibung (Verilog, VHDL) Graphische Eingabe (strukturell) Simulation (auf allen Abstraktionsebenen) System, Logik auf Gatterebene, Schaltkreis Display-Instrumente Konzeptioneller Entwurf, Prüfung des Layouts Synthese auf hoher Ebene Layout Synthese Auf jeder Abstraktionsebene: entsprechende Repräsentation – Datenbasen IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

10 Unabhängigkeit von Technologie
Die aufgeführten Elemente sind zu keiner Realisierungsmethode gebunden! Warum ist das möglich? Der Entwurf der IC Technologie – und der der Anwendung sind fest getrennt. Sie sind gekoppelt durch die Entwurfsregeln und die Modellparameter. Was folgt daraus? Offene Entwurfssysteme sind möglich (dieselbe Software kann für beliebige Technologie und Realisationsart benutzt werden, z.B. Mentor Graphics für IC oder FPGA). Der Entwurf von digitalen ICs verlangt keine tiefgründigen Mikroelektronik-Kentnisse. (Aber der Analog schon!!) IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

11 Entwurfsregeln Einfache geometrische Regeln zur Gestaltung des Layouts
Sie hängen von der Auflösungsfähigkeit der Technologie (minimale Strukturbreite, MFS) ab. Solche sind z.B.: minimale Abmessungen von Gebilden auf unterschiedlichen Masken minimale Abstände und/oder Überlappungen von Gebilden auf denselben bzw. unterschiedlichen Masken, usw. IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

12 Ursprung der Entwurfsregeln
Es sind immer Fehler in der Herstellung der Masken und in der Chiptechnologie Systematische Fehler: Unterätzung (Verzerrung der Dimensionen) Solarisation (von dem hellen Bereich zum dunklen) Diese können mit Vorverzerrung beseitigt werden Zufällige Fehler 12

13 Ursprung der Entwurfsregel
Es sind immer Fehler in der Herstellung der Masken und in der Chiptechnologie Systematische Fehler Zufällige Fehler falsche Ausrichtung (misalignment) Kristallfehler, polykristalline Struktur Partikel oder Blasen auf der Maske Eine Linie wie entworfen max. Streuung nach der Herstellung φ 13

14 Ursprung der Entwurfsregeln
Reproduzierbarkeit φ – technologische Auflösung für einen Schritt Gleichmäßigkeit Aus wirtschaftlichen Überlegungen Die φ’s der technologischen Schritten sollen in die gleiche Größenordnung fallen dmin 14

15 Die Ausbeute, der Schrott Y ~yield 40% ?
1 d Y Die Ausbeute, der Schrott Y ~yield % ? na, aber wen interessiert das? 15

16 n ist die Anzahl der Chips auf dem Wafer
1 d Y dopt d n 1 d Y·n n ist die Anzahl der Chips auf dem Wafer Y n ist die Anzahl der guten Chips auf dem Wafer 16

17 Entwurfsregeln Es gibt zwei Arten von Regeln: Genaue Entwurfsregeln:
Anwendung von dopt für jeden Schritt λ Entwurfsregeln λ Entwurfseinheit --> λ ist das größte dopt 17

18 Entwurfsregeln mit  -Regeln: = 2(Auflösung der Technologie, MFS)
Die Regeln sind in Einheiten von  angegeben (ganzes Vielfache), die Layout-Gebilde sind auf ein solches Raster ausgelegt. Vorteil: so ein Layout kann auf eine Technologie mit kleinerer Strukturgröße leicht portiert werden, es braucht lediglich der Wert von  umgeschrieben zu werden. IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

19 Regeln für eine Schicht
Diffusion PolySi Metall Kontakt 19

20 Regeln für mehrere Schichten
Kontakt Transistor 20

21 Typische Entwurfsregeln mit 
Weite von aktiven Flächen (Diffusionsstreifen) : 2 Abstand von Aktiven: 3 (wegen Sperrschicht) poly-Si: Streifenweite, Abstand: 2 Weite von Metallstreifen, Abstand: 3 (wegen Oxidstufen) 2 3 IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

22 Typische Entwurfsregeln mit 
Grösse von Kontaktfenstern: 2 Abstand Kontakt–Metall:  Überlappung Gate über Aktiv, usw. 2 IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

23 Der Prozess von IC Entwurf
Spezifikation Vorfabrikation, Vorentwurf Das Design Flow – illustriert am Beispiel des Standardzellen-Entwurfs Hierarchischer Entwurf (top-down, bottom-up) Globales (Chip) Layout: Floorplan IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

24 Spezifikation – der erste Schritt des Entwurfs
Technische Spezifikation (global) Was ist die Funktion, die durch Elektronik realisiert wer-den soll? (z.B. digitale Steuerung von Modell-Eisenbahn) Aufbau eines Systemmodells z.B. in UML Wirtschaftliche Spezifikation In was für einem Produkt wird das System verwendet? Wie hoch ist sein Kostenanteil innerhalb des Produkts Sind die Kosten begrenzt? z.B. Taschenrechner – die meisten Kosten stellen das Gehäuse, die Tastatur und das Display dar Weitere Gesichtspunkte es soll nicht nachfabrizierbar sein (z.B. Militärelektronik oder andere Systeme mit hohem Mehrwert) IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

25 Spezifikation – der erste Schritt des Entwurfs
Weitere Gesichtspunkte (Fortsetzung) räumliche Grenzen (siehe Beispiel mit Modellbahn - der Dekoder soll in einer N-Lokomotiv untergebracht werden) niedriger Verbrauch wird erwartet, Batteriebetrieb – wie Laptop oder Handy (low power design) niedrige Versorgungsspannung (z.B. 1.5V), ist erwünscht (low voltage design) Konkurrenzfähigkeit Zeit bis zur Markteinführung (time-to-market) technologischer Vorsprung wirtschaftliche Abhängigkeiten z.B. beim FPGA-Entwurf – wie lange wird das verwendete FPGA erhältlich sein? die Frage des sog. 2nd sourcing Standards z.B. bei aerospace Verwendung darf kein volatiles Mittel eingebaut werden IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

26 Festlegung der Spezifikation
Entscheidung: was soll analog, was soll digital sein z.B. Modellbahn-Kontroller: 1 digitaler IC – vielerlei analoge Umgebungen  unterschiedliche Funktionen: Lokomotiv-Dekoder, Weiche-Dekoder, Semaphor-Dekoder Bei digitalen Systemkomponenten: gemeinsamer HW-SW Entwurf, dann Partitionierung (mit Rücksicht auf Kostenanteile) Optimierung von wichtigen digitalen HW System-parametern, wie z.B. Breite der Daten- und Adressenbusse, Dimensionierung von Speichern, usw. IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

27 Festlegung der Spezifikation 2
Die Spezifikation der grösseren HW Komponenten wird universell festgesetzt – in HDL beschrieben Verhaltensbeschreibung wird erstellt – das ist unabhängig von der Form der Realisierung Das ist die Festlegung der exakten technischen Spezifikation des Komponenten Das ist für formale Verifikation geeignet: Tut es wirklich das, was erwartet wird? Davon kann eine strukturelle Beschreibung erstellt werden (per Hand oder Synthese) – das kann immer noch unabhängig von der endgültigen Realisierung sein die Methodik der Prüfung (Test) wird angegeben (test bench – Beschreibung der Stimuli für Logiksimulation) z.B. auch das US DoD verlangt Stimuli in VHDL Das IP ist unabhängig von der Realisierung beschrieben IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

28 Methode für Realisation wird gewählt
Was beeinflusst die Entscheidung? Erfahrung der Entwerfer: was kennen sie am besten? Was für Entwurfsprogramme stehen zur Verfügung Gesichtspunkte nicht technischer Charakter: finanzielle und zeitliche Beschränkungen, copy-safe Realisierung, Stückzahl, Konkurrenzfähigkeit, usw. z.B. : ein „Brettmodell“ ist dringend notwendig – FPGA Stückzahl – ASIC IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008

29 Beispiel: Signalbearbeitung
S&H A/D A() D/A Rein analoge Realisierung von A() oder digitale Filterung: statt A() eine Z-Transformation Verzögerungsglieder Multiplizierer Addierer Methode wählen für die Realisierung DSP + Software flexibel, die Charakteristik ist einfach zu modifizieren nicht copy-safe, volatil, eventuell eine komplizierte Umgebung Zielhardware: Verzögerung – Schieberegister, Addierer/Multiplizierer – Kombinatorik FPGA – wiederprogrammierbar ASIC – ein für allemal feste Architektur Völlig automatisierbarer Entwurfsprozess IC tervezés 2: Tervezési szabályok, tervező rendszerek, MPW © Poppe András, BME-EET 2008


Herunterladen ppt "MIKROELEKTRONIK, VIEEAB00"

Ähnliche Präsentationen


Google-Anzeigen