Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Shanon Greene Geändert vor über 6 Jahren
1
The Equations of Motion in a Rotating Coordinate System
Chapter 3
2
Effective gravity and Coriolis force
Since the earth is rotating about its axis and since it is convenient to adopt a frame of reference fixed in the earth, we need to study the equations of motion in a rotating coordinate system. Before proceeding to the formal derivation, we consider briefly two concepts which arise therein: Effective gravity and Coriolis force
3
Effective Gravity g is everywhere normal to the earth’s surface R R g*
Die effektive Schwerkraft hätte dann eine zum Äquator gerichtete Komponente parallel zur Erdoberfläche. Sie haben aber letztes Semester gesehen, daß die rotierende flüssige Erde, auf Grund der Zentrifugalkraft nicht als Kugel erstarrte, sondern mit einem Äquatorwulst und einer Abplattung am Pol (Radius am Äquator = Radius am Pol + 21 km). Deshalb ist die Massenverteilung so, daß g immer senkrecht zur Erdoberfläche steht. Nicht ganz korrekt wird die Schwerebeschleunigung g oft auch als Graviationsbeschleunigung bezeichnet. Wenn man g statt g* verwendet, läßt sich die Newton’sche Gleichung vereinfachen. effective gravity g on a spherical earth effective gravity on an earth with a slight equatorial bulge
4
Effective Gravity If the earth were a perfect sphere and not rotating, the only gravitational component g* would be radial. Because the earth has a bulge and is rotating, the effective gravitational force g is the vector sum of the normal gravity to the mass distribution g*, together with a centrifugal force W2R, and this has no tangential component at the earth’s surface. As it cooled from a liquid state, the earth has adjusted its mass distribution so that there is no equatorward force component. Thus, the slight equatorial "bulge" (equatorial radius = polar radius + 21 km) is such that g is always normal to the surface.
5
The Coriolis force W A line that rotates with the roundabout
A line at rest in an inertial system Apparent trajectory of the ball in a rotating coordinate system
6
Mathematical derivation of the Coriolis force
Representation of an arbitrary vector A(t) A(t) = A1(t)i + A2(t)j + A3(t)k k k ´ A(t) = A1´(t)i ´ + A2´ (t)j ´ + A3´ (t)k´ j inertial reference system rotating reference system j ´ i ´ i
7
The time derivative of an arbitrary vector A(t)
The derivative of A(t) with respect to time the subscript “a” denotes the derivative in an inertial reference frame In the rotating frame of reference
8
Unit vector perpendicular to W and a
Let a be any vector rotating with angular velocity W a + da a Unit vector perpendicular to W and a
9
Position vector r(t) Want to calculate O the absolute velocity of an air parcel The relative velocity in a rotating frame of reference is and
10
Example V WRe Earth’s radius This air parcel starts relative to the earth with a poleward velocity V. It begins relative to space with an additional eastwards velocity component WRe .
11
We need to calculate the absolute acceleration if we wish to apply Newton's second law
Measurements on the earth give only the relative velocity u and therefore the relative acceleration With A = ua
12
absolute acceleration relative acceleration Coriolis- acceleration
Centripetal acceleration Wenn die Beschleunigung du/dt in einem Koordinatensystem gemessen ist, die mit der Erde rotiert, ergibt sich durch Addition der Coriolisbeschleunigung und der Zentripetal-beschleunigung die absolute Beschleunigung daua/dt in einem Inertialsystem. Für vorgegebene |omega| und |u| wird die Coriolisbeschleunigung maximal wenn omega und u senkrecht aufeinander stehen, und wird Null, wenn omega und u parallel sind.
13
Centripetal acceleration
Position vector r is split up R r The Centripetal acceleration is directed inwards towards the axis of rotation and has magnitude |W|2R.
14
Newton’s second law in a rotating frame of reference
In an inertial frame: force per unit mass density In a rotating frame:
15
Alternative form Coriolis force Centrifugal force
16
Let the total force F = g* + F´ be split up
With Bereits bisher wurde g = (0,0,g) und nicht g* als Schwere-beschleunigung (Graviationsbeschleunigung) verwendet [z.B. in der hydrostatischen Gleichung The centrifugal force associated with the earth’s rotation no longer appears explicitly in the equation; it is contained in the effective gravity.
17
This is the Euler equation in a rotating frame of reference.
When frictional forces can be neglected, F’ is the pressure gradient force total pressure per unit volume per unit mass Bei der Anwendung von der obenen Gleichung ist es günstig, die Gleichung in einem kartesischen Koordinatensystem mit Nullpunkt in der Breite zu betrachten This is the Euler equation in a rotating frame of reference.
18
The Coriolis force does no work
the Coriolis force acts normal to the rotation vector and normal to the velocity. W u is directly proportional to the magnitude of u and W. Wenn die Beschleunigung du/dt in einem Koordinatensystem gemessen ist, die mit der Erde rotiert, ergibt sich durch Addition der Coriolisbeschleunigung und der Zentripetal-beschleunigung die absolute Beschleunigung daua/dt in einem Inertialsystem. Für vorgegebene |omega| und |u| wird die Coriolisbeschleunigung maximal wenn omega und u senkrecht aufeinander stehen, und wird Null, wenn omega und u parallel sind. Note: the Coriolis force does no work because
19
Perturbation pressure, buoyancy force
Define where p0(z) and r0(z) are the reference pressure and density fields p is the perturbation pressure Important: p0(z) and r0(z) are not uniquely defined Euler’s equation becomes g = (0, 0, -g) the buoyancy force
20
Important: the perturbation pressure gradient
and buoyancy force are not uniquely defined. But the total force is uniquely defined. Indeed
21
A mathematical demonstration
Momentum equation Continuity equation The divergence of the momentum equation gives: This is a diagnostic equation!
22
Newton’s 2nd law vertical component
mass acceleration = force
23
buoyancy form Put where Then where
24
buoyancy force is NOT unique
it depends on choice of reference density ro(z) but is unique
25
Buoyancy force in a hurricane
26
Initiation of a thunderstorm
z constant T U(z)
27
LFC LCL negative buoyancy tropopause outflow original heated air
q = constant positive buoyancy LFC LCL inflow negative buoyancy
28
Some questions How does the flow evolve after the original thermal has reached the upper troposphere? What drives the updraught at low levels? Observation in severe thunderstorms: the updraught at cloud base is negatively buoyant! Answer: - the perturbation pressure gradient
29
HI HI LFC LCL positive buoyancy HI p' outflow original heated air LO
inflow HI negative buoyancy
30
Show Hector movie
31
Scale analysis Assume a homogeneous fluid r = constant.
Euler’s equation becomes: scales: Then Rossby number
32
Extratropical cyclone
2W = s-1 L = 106 m L U = 10 ms-1
33
Tropical cyclone U = 50 m/sec 2W = 5 X 10-5 L = 5 x 105 m
34
Dust devil L L = m U = 10 ms W = 10-4s-1
36
Show dust devil movie
37
Waterspout L = 100 m U = 50 ms-1 2W = 10-4s-1 L
38
Aeroplane wing L = 10 m U = 200 m s W = 10-4s-1
39
The Rossby number
40
Summary (i) Large scale meteorological and oceanic flows are strongly constrained by rotation (Ro << 1), except possibly in equatorial regions. (ii) Tropical cyclones are always cyclonic and appear to derive their rotation from the background rotation of the earth. They never occur within 5 deg. of the equator where the normal component of the earth's rotation is small. (iii) Most tornadoes are cyclonic, but why? (iv) Dust devils do not have a preferred sense of rotation as expected. (v) In aerodynamic flows, and in the bath (!), the effect of the earth's rotation may be ignored.
41
Coordinate systems and the earth's sphericity
Many of the flows we shall consider have horizontal dimensions which are small compared with the earth's radius. In studying these, it is both legitimate and a great simplification to assume that the earth is locally flat and to use a rectangular coordinate system with z pointing vertically upwards. Holton (§2.3, pp31-35) shows the precise circumstances under which such an approximation is valid. In general, the use of spherical coordinates merely refines the theory, but does not lead to a deeper understanding of the phenomena.
42
Take rectangular coordinates fixed relative to the earth and centred at a point on the surface at latitude. k j i equator
43
f-plane or b-plane
44
In component form I will show that for middle latitude, synoptic-scale weather systems such as extra-tropical cyclones, the terms involving cos f may be neglected. The important term for large-scale motions
45
To a good approximation
Coriolis parameter Die Corioliskraft beeinflußt nur horizontale Luftströmungen. Außerdem ist sie von der Breite phi abhängig. In Äquatornähe kann man die Wirkung der horizontalen Komponente der Corioliskraft vernachlässigen, in Richtung Pol wird sie dagegen immer größer.
46
Scale analysis of the equations for middle latitude synoptic systems
Much of the significant weather in middle latitudes is associated with extra-tropical cyclones, or depressions. We shall base our scaling on such systems. Let L, H, T, U, W, P and R be scales for the horizontal size, vertical extent, time, |uh|, w, perturbation pressure, and density in an extra-tropical cyclone, say at 45° latitude, where f (= 2W sin f ) and 2W cos f are both of order 10-4. and
47
horizontal momentum equations
scales U2/L 2 WU sin f 2WW cos f dP/rL orders
48
vertical momentum equations
scales UW/L 2WU cosf dPT/rH g orders negligible the atmosphere is strongly hydrostatic on the synoptic scale. But are the disturbances themselves hydrostatic?
49
Question: when we subtract the reference pressure p0 from pT, is it still legitimate to neglect Dw/Dt etc? vertical momentum equations scales UW/L 2WU cosf dP/rH* gdT/T0 orders still negligible H* = height scale for a perturbation pressure difference dp of 10 mb assume that H* H assume that dT 3oK/300 km
50
In summary orders In synoptic-scale disturbances, the perturbations are in close hydrostatic balance Remember: it is small departures from this equation which drive the weak vertical motion in systems of this scale.
51
The hydrostatic approximation
The hydrostatic approximation permits enormous simplifications in dynamical studies of large-scale motions in the atmosphere and oceans.
52
Summary of momentum equations
+ a continuity equation + a thermodynamic equation
53
End of Chapter 3
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.