Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

QuBounce the dynamics of ultra-cold neutrons in the gravity potential

Ähnliche Präsentationen


Präsentation zum Thema: "QuBounce the dynamics of ultra-cold neutrons in the gravity potential"—  Präsentation transkript:

1 QuBounce the dynamics of ultra-cold neutrons in the gravity potential
Hartmut Abele TU München

2 Friedman DGL   ~ 5µm,  < 106
B&C ‘05: Cosmological Constant linked to Size of extra dimensions   ~ 5µm,  < 106 ADD ‘99: Repulsive forces gauge fields in the bulk Strength  = 106 – 109, range  < 100 µm, Hartmut Abele, Technische Universität München 2 2

3 Neutrons test Newton Tool: Ultra-Cold Neutrons Pragmatic Definition
UCN reflect from surfaces at all angles Strong Interaction: V ~ 100 neV Kinetic Energy: neV 50neV < E < 2.1µeV 132nm >  > 20nm 3m/s < v < 20m/s Electro Magnetism, Zeeman splitting : 120 neV/T Energy in the earth‘s gravitational field: E = mgh 100neV/m

4 ? Quantum Bounce Cold-Source at 40 K Hartmut Abele
Hartmut Abele, Technische Universität München 4 4

5 Schrödinger Equation Scale with length scale z0 Shift Turning Points:
Neutron z Mirror Airy Function Scale with length scale z0 Shift Turning Points: Energy Distance to Mirror mgz

6 Observation of Bound Quantum States
Energy Distance to Mirror mgz Neutron mirror: polished glass plate 10 cm long T~h3/2 Nature (2002), Phys. Rev. D (2003).

7 Limits N = 106 after 25 days Observation time T = 100ms
Hartmut Abele, Technische Universität München 7 7

8 The Quantum Bouncer Neutron detection: He – detector n + 3He  t + p
(no spatial resolution) Track detector n + 235U  fission n + 10B  Li + a

9 Horizontal velocity 6 m/s < vx < 7.2 m/s
Hartmut Abele, Technische Universität München

10 Stability Vibrations Inclinometers
Hartmut Abele, Technische Universität München

11 Inclination < 0.5 µrad Hartmut Abele, Technische Universität München

12 Simulation T. Jenke

13 First results ~4500 neutrons in total distance from step x = 0cm

14 Hartmut Abele, Technische Universität München

15 The Experimental Team:
Tobias Jenke, Hanno Filter, Peter Geltenbort, David Stadler, H.A.

16 Summary: Galileo in Quantum Land
Observation of quantum states (2002) Limits on hypothetical fifth forces Development of spatial resolution detectors (1µm) Phase measurements 2009 Hartmut Abele, Technische Universität München

17 Reserva Hartmut Abele, Technische Universität München

18 The absorber Loss mechanism Overlapp with absorber WKB states
rough gadolinium absorber/scatterer rough copper absorber/scatterer count rate [Hz] Absorber Height Δh [μm] 10 20 30 0,001 0,01 Absorber/Scatterer Bottom mirrors Roughness:  = 0,7 μm Corr. length: 5 μm Loss mechanism Overlapp with absorber WKB states

19 Effect of hypothetical Yukawa-type Forces
arising from higher-dimensional gravity, gauge forces or massive scalar fields Yukawa force deforms the wave function Changes the energy Mirror Absorber Limits on  and λ:

20 2nd Run Turning Points at : Westphal, Baeßler, H.A.
arXiv:hep-ph/ V. Nesvizhevsky et al., EPJ, 2005

21 C. Krantz, Diploma thesis, 2006 Spatial resolution ~1.5 µm

22 Exciting discovery: 10 years old The accelerating expansion of the universe
z Hartmut Abele Hartmut Abele, Technische Universität München 22 22

23 2nd Run Turning Points at : Westphal, Baeßler, H.A.
arXiv:hep-ph/ V. Nesvizhevsky et al., EPJ, 2005

24 Classical equation of motion
Glass mirror

25 2nd Run 2002 V. Nesvizhevsky et al., EPJ, 2005

26 The absorber Loss mechanism Overlapp with absorber WKB states
Absorber/Scatterer Bottom mirrors Loss mechanism Overlapp with absorber WKB states

27 Limits: Neutrons test Newton
H.A., Baeßler, Westphal, LNP Leeb, Schmiedmayer ADD, gauge fields Cosmological constant Neutron Nucleus scattering: 1a, 1b Neutron Bound Quantum states: 7 Casimir / van der Waals: 2 – 9 based on U. Schmidt, Habilitation Thesis, 2005 Hartmut Abele, Technische Universität München Hartmut Abele 27 27

28 CR39 track detector Uranium Detector Boron Detector
Neutron detector with a spatial resolution of about 1mu

29 ~ 200µm ~ 10 cm

30 Neutron Density Distribution with Spatial Resolution Detector
First three levels mm V. Nesvizhevsky et al., EPJ, 2005

31 2.1 Beste Axion Grenzen 2007 UCN PVLAS Baeßler et al., PRD 2007
Westphal, Baeßler, H.A. UCN arXiv:hep-ph/ other limits Hartmut Abele, Technische Universität München 31

32 Reversed Geometry T~h3/2 Westphal, 2001

33 The gravity work has been done by ...
Heidelberg University: T. Jenke, D. Stadler, HA G. Divkovic, N. Haverkamp, D. Mund, C. Krantz, S. Nahrwold, F. Rueß, T. Stöferle, HA ILL, Grenoble: V. Nesvizhevsky, A. Petukhov, H. Boerner, P. Geltenbort Gatchina, St. Petersburg A. Gagarsky, G. Petrov, S. Soloviev University of Virginia S. Baeßler DESY A. Westphal, CERN ISN JINR B. van der Vyver K. Protasov, Yu. Voronin Strelkov Hartmut Abele

34 Zusammenfassung: Galileo im Quantenland
Nachweis der Quantenzustände Grenzen auf gravitationsähnliche Kräfte Entwicklung von ortsempfindlichen Neutrondetektoren (1µm) Phasenmessungen 2009 Hartmut Abele, Technische Universität München


Herunterladen ppt "QuBounce the dynamics of ultra-cold neutrons in the gravity potential"

Ähnliche Präsentationen


Google-Anzeigen