Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Quentin Fox Geändert vor über 7 Jahren
1
K±K± HBT Study with HMPID - Status Report -
Jungyu Yi Pusan National University Ko-ALICE meeting
2
Motivation Historical review HMPID In 1950s, Hanbury-Brown & Twiss
For Improving of Resolution Power of Michelson Interferometry: [Phil.Mag.45, 663 (1954)] Astronomical Application : [Nature 178, (1956)] A Test of a New Type of Stellar Interferometer on Sirius Particle Physics application G. Goldhaber, S. Goldhaber, W. Lee, & A. Pais : [Phys.Rev.120,300 (1960)] Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process GGLP : Bose-Einstein Correlation Contribution of the HMPID detector to the high-pT physics at LHC [D.Di Bari et al. arXiv: v1, 2008] “ Final-state information of heavy-ion collisions is more directly accessed by interferometric methods, such as the Hanbury-Brown and Twiss (HBT) measurement.” “At LHC, due to the high multiplicity, event-by-event HBT could be performed. To achieve event- by-event HBT measurements, 3σ separation in particle identification is required. The HMPID can contribute in the high-pT region: to π±π±, K±K± and p±p± HBT measurements. JunGyu Yi Ko-ALICE meeting,
3
Analysis Concept for analysis,
The correlation function for Gaussian source ( 1D parameterization ) (3D parameterization ) ~ 1/R Bose-Einstein correlation (: transverse momentum) Rside : related geometrical transverse size Rlong : related longitudinal extent Rout : related to emission duration Compares relative momenta of identical particles to determine information about space-time geometry of source for analysis, A (q) : pair distribution in momentum difference q = p2 – p1 for pairs of particles from the same event. B (q) : the corresponding distribution for pairs of particles from different events. JunGyu Yi Ko-ALICE meeting,
4
HMPID layout p and K up to 3 GeV/c p up to 5 GeV/c,
track-by-track basis. ~ 5% acceptance w.r.t Central barrel detectors JunGyu Yi Ko-ALICE meeting,
5
HMPID Analysis task AliHMPIDAnalysisTask.cxx/.h includes,
AliESDtrack.h AliPID.h AliCentrality.h AliPIDResponse.h Tree TreeEvt run ‘AnalysisTrainHMPID.C’ includes, AddTaskPhysicsSelection.C AddTaskCentrality.C AddTaskESDFilter.C AddTaskJets.C AddTaskPIDResponse.C AddTaskHMPID.C for event JunGyu Yi Ko-ALICE meeting,
6
hmpidouput.root :: HMP X,Y
Aliroot::v AN LHC11h pass2 example : run_169504, events: There was problems in HMPID Module 1 , 4, 6 It’s known, can affect the acceptance JunGyu Yi Ko-ALICE meeting,
7
Cherenkov Angle vs. momentum
AliPID::kElectron, Prob0>0.7 AliPID::kMuon, Prob1>0.7 AliPID::kPion, Prob2>0.7 AliPID::kKaon, Prob3>0.7 AliPID::kProton, Prob4>0.7 JunGyu Yi Ko-ALICE meeting,
8
Total and Kaon Multiplicity : e-by-e
track->GetNcls(1) >70 DCA < 2 [cm] MIP charge > 100 track->GetNcls(1) >70 DCA < 2 [cm] MIP charge > 100 && probsHMP[3]>0.7 JunGyu Yi Ko-ALICE meeting,
9
Outlook Kaon PID with HMPID in PbPb √sNN = 2.76 TeV
HMPID framework study : partially done HMPID Track/PID quality study for PbPb At least 1 Kaon track : for bkg. , event mixing At least 2 Kaon track : for Signal Analysis algorithms, Code development correlation signal construction event mixing PWGCF - femtoscopy framework study Goal Preliminary ‘Correlation function (qinv)’ in this winter. Welcome advice, comments, suggestions!! JunGyu Yi Ko-ALICE meeting,
10
Backup JunGyu Yi Ko-ALICE meeting,
11
Bose-Einstein Correlation (1)
In-Kwon YOO Bose-Einstein Correlation (1) 2018년 6월 9일 p1 p2 r1‘ r2‘ r1 r2 A(p1,r1)eij(r1)eip1(r1-r‘1)A(p2,r2)eij(r2)eip2(r2-r‘2) = Yd A(p1,r2)eij(r2)eip1(r2-r‘1)A(p2,r1)eij(r1)eip2(r1-r‘2) = Yc q = p1 - p2 K= 0.5(p1 + p2) ; r = r1 - r2 {Yd + Yc} = eij(r1)eij(r2)F(p1p2:r1r2 r1‘r2‘) 1 2 P(p1,p2) = dr1dr2r(r1)r(r2)|F|2 = P(p1)P(p2) + | dreiqrr(r)A2(K,r)|2 Wenn zwei Bosonen jeweils mit den Impulsen p1 und p2 an den Detektoren r1‘ und r2‘ gefunden sind, kann man nicht genau wissen, woraus sie stammen. Die Wellenfunktion der direkten Entdeckung (die die durgezogene Linie bezeichnet ist) nennen wir Psi d. Und die Wellenfunktion der gewechselten Entdeckung (die die gestrichelte Linie bezeichnet ist) nennen wir Psi c: gerade r1 und r2 sind umgetauscht. Nach der Symmetrie gegen Umtauschen der Bosonen sollte die gesamte Wellenfunktion so aussehen. Integriert man diese Wellenfunktion über r1 und r2, dann erhält man die Wahrscheinlichkeit, daß man an den zugehörigen Detektoren die Bosonen jeweils mit p1 und p2 entdeckt. Wenn man die relative Variablen q, K und r einführt, läßt sich die Wahrscheinlichkeit einfacher berechnen. Wie man hier sieht, ist der erste Term ein Produkt der unkorrelierten Wahrscheinlichkeiten, und der zweite Term eine Fourier-transformierte Intensitätsverteilung in der Quelle. Also ist die Bose-Einstein Korrelation folgendermassen zu definieren. Insbesondere tritt hier die Fourier-transformierte Intensitätsverteilung S der Quelle auf. drS(K,r)eiqr 2 drS(K,r) P(p1,p2) P(p1)P(p2) Bose-Einstein Correlation Function C2 = = 1+ JunGyu Yi Ko-ALICE meeting, Bose-Einstein Correlation
12
Identical kaons pairs yield in HMPID acceptance in PbPb data
Total identical pions pairs = 800 *106 in 60*106 p-p 7 TeV MB events 0.13 GeV/c < KT < 0.7 GeV/c JunGyu Yi Ko-ALICE meeting,
13
Identical kaons pairs yield in HMPID acceptance in PbPb data
JunGyu Yi Ko-ALICE meeting,
14
Total statistic collected up to now
2010 pp 7 TeV, LHC10b and LHC10c (pass3): ≈ 80* millions of MB events, new tracking; pp7 TeV, LHC10d (pass2): ≈ 200 millions of events, old tracking; pp 7 TeV, LHC10e (pass2): ≈ 200 millions of events, old tracking; PbPb 2.76 ATeV, LHC10h (pass2): ≈ 10* millions of MB events , old tracking; 2011 pp 2.76 TeV, LHC11a (pass3): ≈ 50* millions of MB events, new tracking; pp 7 TeV, LHC11b (pass1) : ≈ 50 millions of events, old tracking; pp 7 TeV LHC11c (pass1): ≈ 100 millions of events, half old tracking, half new tracking; pp 7 TeV LHC11d (pass1): ≈ 20 millions of events, new tracking; JunGyu Yi Ko-ALICE meeting,
15
Total statistic collected up to now
2011 pp 7 TeV, LHC11e (pass1): ≈ 40 millions of events, new tracking; PbPb 2.76 ATeV, LHC11h: ≈ 10* millions of central events, ≈ 10 millions of semi-central events, few millions of MB events, new tracking. 2012 (MB events fraction rather small) pp 8 TeV, LHC12a (pass1): ≈ 50 millions of events, new tracking; pp8 TeV, LHC12b (pass1): ≈ 70 millions of events, new tracking; pp8 TeV, LHC12c (cpass1): ≈ 30 millions of events, new tracking; pp8 TeV, LHC12d (pass1): ≈ 30 millions of events, new tracking; pp8 TeV, LHC12f (pass1): ≈ 10 millions of events, new tracking; pp8 TeV, LHC12g and LHC12h (cpass1): ≈ 6 millions if events, new tracking; …………………………………………………? JunGyu Yi Ko-ALICE meeting,
16
Total statistic collected up to now
Total p-p 8 TeV MB events: ≈ 20*106? Total p-p 7 TeV MB events: ≈ 800*106 Total p-p TeV MB events: ≈ 50*106 Total Pb-Pb 2.76 ATeV events: 10*106 MB, 10*106 central (0-10%), 10*106 semi central (10-50%) JunGyu Yi Ko-ALICE meeting,
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.